Rapid electrospray synthesis and photocatalytic activities inhibition by ZnO–SiO2 composite particles

Abstract

The fabrication of ZnO–SiO2 (ZS) composite found to be a great challenge owing to the disadvantage of the recent method such as high temperature and multistep process. To this end, a new and rapid method for fabricating zinc oxide (ZnO) and ZS composite particles by the simple electrospray method was developed. Results from this method provide a free agglomeration and smaller particle size of ZS composite (compared with pure ZnO) with an increase in the applied voltage, which correlates with the charge repulsion within the particles. The presence of silica inhibited the ZnO particles and crystal growth. The XRD and FTIR spectra indicated that silica covered the ZnO particles. Smaller ZS molar ratio with higher applied voltage had a significant role in minimizing the agglomeration of particle production. This suggested a morphological control of the composite through electrospray. The results of the photocatalytic degradation of methylene blue (MB) in aqueous solution revealed that the presence of silica effectively inhibited the photocatalytic activity of ZnO particles in which the degradation rates of ZnO without and with silica were 85% and 63%, respectively. The effect of silica on the ultraviolet (UV) shielding property of ZnO particles also examined.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abdullah A, Shibamoto S, Okuyama O (2004) Synthesis of ZnO/SiO2 nanocomposites emitting specific luminescence colors. Opt Mater 26:95–100. https://doi.org/10.1016/j.optmat.2004.01.006

    CAS  Article  Google Scholar 

  2. Akiyama H, Yamasaki O, Kanzaki H, Tada J, Arata J (1998) Effects of zinc oxide on the attachment of Staphyloccocus aureus strains. J Dermatol Sci 17:67–74. https://doi.org/10.1016/S0923-1811(97)00070-4

    CAS  Article  PubMed  Google Scholar 

  3. Al-Hilli S, Willander M (2006) Optical properties of zinc oxide nano-particles embedded in dielectric medium for UV region: numerical simulation. J Nanopart Res 8:79–97. https://doi.org/10.1007/s11051-005-8024-2

    CAS  Article  Google Scholar 

  4. Babu KS, Reddy AR, Reddy KV (2014) Controlling the size and optical properties of ZnO nanoparticles by capping with SiO2. Mater Res Bull 49:537–543. https://doi.org/10.1016/j.materresbull.2013.09.024

    CAS  Article  Google Scholar 

  5. Banerjee S (2013) Induction of protein conformational change inside the charged electrospray droplet. J Mass Spectrom 48:193–204. https://doi.org/10.1002/jms.3148

    CAS  Article  PubMed  Google Scholar 

  6. Chen T, Zheng Y, Lin J, Chen G (2008) Study on the photocatalytic degradation of the methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry. Am Soc Mass Spectrom 19:997–1003. https://doi.org/10.1016/j.jasms.2008.03.008

    CAS  Article  Google Scholar 

  7. Choi KH, Siddiqui GU, Yang B, Mustafa M (2015) Synthesis of ZnSnO3 nanocubes and thin film fabrication of (ZnSnO3/PMMA) composite through electrospray deposition. J Mater Sci Mater Electron 26:5690–5696. https://doi.org/10.1007/s10854-015-3121-1

    CAS  Article  Google Scholar 

  8. Collard X, El Hajj M, Su B, Aprile C (2014) Synthesis of novel mesoporous ZnO/SiO2 composites for the photodegradation of organic dyes. Microporous Mesoporous Mater 184:90–96. https://doi.org/10.1016/j.micromeso.2013.09.040

    CAS  Article  Google Scholar 

  9. Curri MI, Comparelli R, Cozzli PD, Mascolo G, Agostiano A (2003) Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye. Mater Sci Eng C 23:285–289. https://doi.org/10.1016/S0928-4931(02)00250-3

    Article  Google Scholar 

  10. Dai L, Chen XL, Zhang X, Zhou T, Hu B (2004) Coaxial ZnO/SiO2 nanocables fabricated by thermal evaporation/oxidation. Appl Phys A 78:557–559. https://doi.org/10.1007/s00339-003-2427-7

    CAS  Article  Google Scholar 

  11. Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744. https://doi.org/10.1021/jp0209289

    CAS  Article  Google Scholar 

  12. Kim YS (2010) Fabrication of carbon black-polymer composite sensors using a position-selective and thickness-controlled electrospray method. Sensor and Actuators B Chem 147:137–144. https://doi.org/10.1016/j.snb.2010.03.002

    CAS  Article  Google Scholar 

  13. Kim A, Won Y, Woo K, Kim C, Moon J (2013) Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 7:1081–1091. https://doi.org/10.1021/nn305491x

    CAS  Article  PubMed  Google Scholar 

  14. Kusdianto K, Widiyastuti W, Shimada M, Qomariyah L, Winardi S (2020) Fabrication of ZnO-SiO2 nanocomposite materials prepared by a spray pyrolysis for the photocatalytic activity under UV and sunlight irradiations. IOP Conf Ser Mater Sci Eng 778:012105. https://doi.org/10.1088/1757-899X/778/1/012105

    Article  Google Scholar 

  15. Lenggoro IW, Lee HM, Okuyama O (2006) Nanoparticle assembly on patterned “plus/minus” surfaces from electrospray of colloidal dispersion. J Colloid Interface Sci 303:124–130. https://doi.org/10.1016/j.jcis.2006.07.033

    CAS  Article  PubMed  Google Scholar 

  16. Lin HM, Tzeng SJ, Hsiau PJ, Tsai WI (1998) Electrode effects on gas sensing properties of nanocrystalline zinc oxide. Nanostruct Mater 10:465–477. https://doi.org/10.1016/S0965-9773(98)00087-7

    CAS  Article  Google Scholar 

  17. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426. https://doi.org/10.1021/jp9917648

    CAS  Article  Google Scholar 

  18. Look DC (2001) Recent advances in ZnO materials and devices. Mater Sci Eng B 80:383–387. https://doi.org/10.1016/S0921-5107(00)00604-8

    Article  Google Scholar 

  19. Martorano L, Stork C, Li Y (2010) UV irradiation-induced zinc dissociation from commercial zinc oxide sunscreen and its action in human epidermal keratinocytes. J Cosmet Dermatol 9:276–286. https://doi.org/10.1111/j.1473-2165.2010.00521.x

    Article  PubMed  Google Scholar 

  20. Moustaghfir A, Tomasella E, Jacquet M, Rivaton A, Malihot B, Gardette JL, Beche E (2006) ZnO/Al2O3 coatings for the photoprotection of polycarbonate. Thin Solid Films 515:662–665. https://doi.org/10.1016/j.tsf.2005.12.234

    CAS  Article  Google Scholar 

  21. Panigrahi S, Bera A, Basak D (2011) Ordered dispersion ZnO quantum dots in SiO2 matrix and its strong emission properties. J Colloid Interface Sci 353:30–38. https://doi.org/10.1016/j.jcis.2010.09.055

    CAS  Article  PubMed  Google Scholar 

  22. Qomariyah L, Aisah M, Cahyando N, Widiyastuti W, Winardi S (2017) Formation of ZnO–SiO2 particle by spray decomposition method. AIP Conf Proc 1840:080009. https://doi.org/10.1063/1.4982307

    CAS  Article  Google Scholar 

  23. Qomariyah L, Arif AF, Widiyastuti W, Winardi S, Taniguchi S, Ogi T (2018a) Hexagonal hollow silica plate particles wit high transmittance under ultraviolet-visible light. RSC Adv 8:26277–26282. https://doi.org/10.1039/C8RA04787A

    CAS  Article  Google Scholar 

  24. Qomariyah L, Sasmita FN, Novaldi HR, Widiyastuti W, Winardi S (2018b) Preparation of stable colloidal silica with controlled size nano spheres from sodium silicate solution. IOP Conf. Ser Mater Sci Eng 395:012017. https://doi.org/10.1088/1757-899X/395/1/012017

    Article  Google Scholar 

  25. Qomariyah L, Widiyastuti W, Winardi S, Kusdianto K, Ogi T (2019) Volume fraction dependent morphological transition of silica particles derived from sodium silicate. Int J Technol 10:603–612. https://doi.org/10.14716/ijtech.v10i3.2917

    Article  Google Scholar 

  26. Qomariyah L, Widiyastuti W, Winardi S (2020) Effect of colloidal properties on the particle characteristics in the flame-assisted spray-drying. Chem Pap 74:285–296. https://doi.org/10.1007/s11696-019-00878-8

    CAS  Article  Google Scholar 

  27. Shimizu A, Chaisitsak S, Sugiyama T, Yamada A, Konagai M (2000) Zinc-based buffer layer in the Cu(InGa)Se2 thin film solar cells. Thin Solid Films 361–362:193–197. https://doi.org/10.1016/S0040-6090(99)00792-0

    Article  Google Scholar 

  28. Siddiquey IA, Furusawa T, Sato M, Bahadur NM, Alam MM, Suzuki N (2012) Sonochemical synthesis, photocatalytic activity and optical properties of silica coated ZnO nanoparticles. Ultrasounics Sonochem 19:750–755. https://doi.org/10.1016/j.ultsonch.2011.12.011

    CAS  Article  Google Scholar 

  29. Sigoli FA, Davolos MR, Jafelicci M (1997) Morphological evolution of zinc oxide originating from zinc hydroxide carbonate. J Alloys Compd 262–263:292–295. https://doi.org/10.1016/S0925-8388(97)00404-0

    Article  Google Scholar 

  30. Spanhel L, Anderson MA (1991) Semiconductor clusters in the sol–gel process: quantified aggregation, gelation, and crystal growth in concentrated ZnO colloids. J Am Chem 113:2826–2833. https://doi.org/10.1021/ja00008a004

    CAS  Article  Google Scholar 

  31. Varga A, Brunelli NA, Louie MW, Giapis KP, Haile SM (2010) Composite nanostructured solid-acid fuel-cell electrodes via electrospray deposition. J Mater Chem 20:6309–6315. https://doi.org/10.1039/C0JM00216J

    CAS  Article  Google Scholar 

  32. Widiyastuti W, Hidayat D, Purwanto A, Iskandar F, Okuyama K (2010) Particle dynamic simulation of nanoparticle formation in a flame reactor using a polydispersed submicron-sized solid precursor. Chem Eng J 158:362–367. https://doi.org/10.1016/j.cej.2010.02.008

    CAS  Article  Google Scholar 

  33. Widiyastuti W, Maula I, Nurtono T, Taufany F, Machmudah S, Winardi S, Panatarani C (2014) Preparation of zinc oxide/silica nanocomposite particles via consecutive sol–gel and flame-assisted spray-drying methods. Chem Eng J 254:252–258. https://doi.org/10.1016/j.cej.2014.05.104

    CAS  Article  Google Scholar 

  34. Xu J, Pan Q, Shun Y, Tian Z (2000) Grain size control and gas sensing properties of ZnO gas sensor. Sensor Actuators B Chem 66:277–279. https://doi.org/10.1016/S0965-9773(98)00087-7

    CAS  Article  Google Scholar 

  35. Zhang M, An T, Hu X, Wang C, Sheng G, Fu J (2004) Preparation and photocatalytic properties of a nanometer ZnO–SnO2 coupled oxide. Appl Catal A Gen 260:215–222. https://doi.org/10.1016/j.apcata.2003.10.025

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support provided by Directorate of Research and Public Service through World Class Research for the research grant under Contract No. 128/SP2H/LT/DRPM/2019 (S.W.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sugeng Winardi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qomariyah, L., Widiyastuti, W., Kusdianto, K. et al. Rapid electrospray synthesis and photocatalytic activities inhibition by ZnO–SiO2 composite particles. Chem. Pap. (2020). https://doi.org/10.1007/s11696-020-01221-2

Download citation

Keywords

  • ZnO–SiO2 composite
  • Electrospray synthesis
  • Morphology control
  • Photocatalysis
  • Degradation of methylene blue