Skip to main content

Advertisement

Log in

Dye-sensitized graphitic carbon nitride (g-C3N4) for photocatalysis: a brief review

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Photocatalytic semiconductors by solar light have received significant attention for their application on photocatalytic H2 evolution, degradation of pollutants, CO2 reduction, and so on. Among them, graphitic carbon nitride (g-C3N4) has the properties of earth rich, metal-free, high physicochemical stability, and suitable electronic band structure and band gap for many kinds of photocatalyst reactions. However, the energy conversion efficiency still limited due to the low utilization efficiency in the longer wavelength. Dye sensitization is currently one of promising methods to extend the absorption response region of semiconductors, and enhances the separation and transportation of photogenerated electrons and holes between dyes and semiconductors. It may be a good candidate strategy to enhance photocatalysis efficiency, even though lack of stability and repeatability for these composites. In this article, we have summarized dye-sensitized g-C3N4 with different mechanisms for variety of photocatalysis process, the relationship between structure of dyes and photocatalytic activity. Especially, dyes in H2 evolution process are divided into metal-free organic dyes, phthalocyanines, and porphyrins in detail. Comparing to metal-free organic dyes, the absorption of phthalocyanines and porphyrins can easily move to near-infrared region, which lead to the enhancement of H2 evolution activity. It may provide a guidance of the structure designing and constructing for highly effective dye-sensitized g-C3N4 photocatalysts for various applications. At last, we shared our opinions on the challenges and perspectives of dyes on g-C3N4 for photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Cao S, Yu J (2014) g-C3N4-based photocatalysts for hydrogen generation. J Phys Chem Lett 5:2101–2107. https://doi.org/10.1021/jz500546b

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Saygili Y, Ummadisingu A, Teuscher J, Luo J, Pellet N, Giordano F, Zakeeruddin SM, Moser JE, Freitag M, Hagfeldt A, Gratzel M (2017) 11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials. Nat Commun 8:15390. http://www.ncbi.nlm.nih.gov/pubmed/28598436

  • Chan C-F, Zhou Y, Guo H, Zhang J, Jiang L, Chen W, Shiu K-K, Wong W-K, Wong K-L (2016) pH-dependent cancer-directed photodynamic Therapy by a water-soluble graphitic-phase carbon nitride-porphyrin nanoprobe. ChemPlusChem 81:535–540. https://doi.org/10.1002/cplu.201600085

    Article  CAS  Google Scholar 

  • Chen D, Wang K, Hong W, Zong R, Yao W, Zhu Y (2015a) Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite. Appl Catal B: Environ 166–167:366–373

    Article  Google Scholar 

  • Chen S, Wang C, Bunes BR, Li Y, Wang C, Zang L (2015b) Enhancement of visible-light-driven photocatalytic H2 evolution from water over g-C3N4 through combination with perylene diimide aggregates. Appl Catal A General 498:63–68

    Article  CAS  Google Scholar 

  • Da Silva ES, Moura NMM, Neves MGPMS, Coutinho A, Prieto M, Silva CG, Faria JL (2018) Novel hybrids of graphitic carbon nitride sensitized with free-base meso-tetrakis(carboxyphenyl) porphyrins for efficient visible light photocatalytic hydrogen production. Appl Catal B: Environ 221:56–69

    Article  Google Scholar 

  • Dang H, Tan G, Yang W, Su F, Fan H, Dong X, Ye L (2017) Enhanced visible-light photocatalytic H2 production of graphitic carbon nitride nanosheets by dye-sensitization combined with surface plasmon resonance. J Taiwan Inst Chem Eng 78:185–194

    Article  CAS  Google Scholar 

  • Dong J, Wang M, Li X, Chen L, He Y, Sun L (2012) Simple nickel-based catalyst systems combined with graphitic carbon nitride for stable photocatalytic hydrogen production in water. Chemsuschem 5:2133–2138. https://doi.org/10.1002/cssc.201200490

    Article  CAS  PubMed  Google Scholar 

  • Freitag M, Teuscher J, Saygili Y, Zhang X, Giordano F, Liska P, Hua J, Zakeeruddin S M, Moser J-E, Grätzel M, Hagfeldt A. (2017) Dye-sensitized solar cells for efficient power generation under ambient lighting. Nature Photonics 11:372-78. https://www.nature.com/articles/nphoton.2017.60

    Article  CAS  Google Scholar 

  • Guo Y, Song S, Zheng Y, Li R, Peng T (2016) Synthesis and characterization of an A2BC type phthalocyanine and its visible-light-responsive photocatalytic H2 production performance on graphitic carbon nitride. Dalton Trans 45:14071–14079. https://doi.org/10.1039/C6DT01248E

    Article  CAS  PubMed  Google Scholar 

  • Hawecker J, Lehn J-M, Ziessel R (1983) Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy) 2+3 -Co2+ combinations as homogeneous catalysts. J Chem Soc Chem Commun 536:38. https://doi.org/10.1039/C39830000536

    Article  Google Scholar 

  • Khan MA, Xia M, Mutahir S, Muhmood T, Lei W, Wang F (2017) Encapsulating nano rods of copper-biphenylamines framework on g-C3N4 photocatalysts for visible-light-driven organic dyes degradation: promoting charge separation efficiency. Catal Sci Technol 7:3017–3026. https://doi.org/10.1039/C7CY00420F

    Article  CAS  Google Scholar 

  • Kuriki R, Sekizawa K, Ishitani O, Maeda K (2015) Visible-light-driven CO2 reduction with carbon nitride: enhancing the activity of ruthenium catalysts. Angew Chem Int Ed 54:2406–2409. https://doi.org/10.1002/anie.201411170

    Article  CAS  Google Scholar 

  • Kuriki R, Matsunaga H, Nakashima T, Wada K, Yamakata A, Ishitani O, Maeda K (2016) Nature-inspired, highly durable CO2 reduction system consisting of a binuclear ruthenium(II) complex and an organic semiconductor using visible light. J Am Chem Soc 138:5159–5170. https://doi.org/10.1021/jacs.6b01997

    Article  CAS  PubMed  Google Scholar 

  • Kuriki R, Yamamoto M, Higuchi K, Yamamoto Y, Akatsuka M, Lu D, Yagi S, Yoshida T, Ishitani O, Maeda K (2017) Robust binding between carbon nitride nanosheets and a binuclear ruthenium(II) complex enabling durable, selective CO2 reduction under visible light in aqueous solution. Angew Chem 129:4945–4949. https://doi.org/10.1002/ange.201701627

    Article  Google Scholar 

  • Li Z, Wu Y, Lu G (2016) Highly efficient hydrogen evolution over Co(OH)2 nanoparticles modified g-C3N4 co-sensitized by Eosin Y and Rose Bengal under visible light irradiation. Appl Catal B Environ 188:56–64

    Article  CAS  Google Scholar 

  • Liang Q, Zhang M, Liu C, Xu S, Li Z (2016) Sulfur-doped graphitic carbon nitride decorated with zinc phthalocyanines towards highly stable and efficient photocatalysis. Appl Catal A: General 519:107–115

    Article  CAS  Google Scholar 

  • Lin X, Zhao S, Chen Y, Fu L, Zhu R, Liu Z (2016) Nitrogen-doped carbon cobalt grafted on graphitic carbon nitride catalysts with enhanced catalytic performance for ethylbenzene oxidation. J Mol Catal A: Chem 420:11–17

    Article  CAS  Google Scholar 

  • Liu G, Tang R, Wang Z (2014) Metal-free allylic oxidation with molecular oxygen catalyzed by g-C3N4 and N-hydroxyphthalimide. Catal Lett 144:717–722. https://doi.org/10.1007/s10562-014-1200-1

    Article  CAS  Google Scholar 

  • Liu C, Dai Z, Zhang J, Jin Y, Li D, Sun C (2018a) Two-dimensional boron sheets as metal-free catalysts for hydrogen evolution reaction. J Phys Chem C 122:19051–19055. https://doi.org/10.1021/acs.jpcc.8b05859

    Article  CAS  Google Scholar 

  • Liu Q, Wang J, Liu D, Li R, Peng T (2018b) Photosensitization of zinc phthalocyanine bearing 15-crown-5 ether moieties on carbon nitride for H2 production: effect of co-existing alkali metal ions. J Power Sour 396:57–63

    Article  CAS  Google Scholar 

  • Lu F, Wang X, Zhao Y, Yang G, Zhang J, Zhang B, Feng Y (2016a) Studies on D-A-π-A structured porphyrin sensitizers with different additional electron-withdrawing unit. J Power Sour 333:1–9

    Article  CAS  Google Scholar 

  • Lu W, Xu T, Wang Y, Hu H, Li N, Jiang X, Chen W (2016b) Synergistic photocatalytic properties and mechanism of g-C3N4 coupled with zinc phthalocyanine catalyst under visible light irradiation. Appl Catal B Environ 180:20–28

    Article  CAS  Google Scholar 

  • Lu F, Feng Y, Wang X, Zhao Y, Yang G, Zhang J, Zhang B, Zhao Z (2017) Influence of the additional electron-withdrawing unit in β-functionalized porphyrin sensitizers on the photovoltaic performance of dye-sensitized solar cells. Dyes Pigments 139:255–263

    Article  CAS  Google Scholar 

  • Lu Y, Song H, Li X, Gren H, Liu Q, Zhang J, V X, Xie Y (2019) Multiply wrapped porphyrin dyes with a phenothiazine donor: a high efficiency of 11.7% achieved through a synergetic coadsorption and cosensitization approach. ACS Appl Mater Interfaces 5:5046–5054. https://doi.org/10.1021/acsami.8b19077

    Article  CAS  Google Scholar 

  • Maeda K, Sekizawa K, Ishitani O (2013) A polymeric-semiconductor-metal-complex hybrid photocatalyst for visible-light CO2 reduction. Chem Commun 49:10127–10129. https://doi.org/10.1039/C3CC45532G

    Article  CAS  Google Scholar 

  • Maeda K, Kuriki R, Zhang M, Wang X, Ishitani O (2014) The effect of the pore-wall structure of carbon nitride on photocatalytic CO2 reduction under visible light. J Mater Chem A 2:15146–15151. https://doi.org/10.1039/C4TA03128H

    Article  CAS  Google Scholar 

  • Maeda K, Kuriki R, Ishitani O (2016) Photocatalytic activity of carbon nitride modified with a ruthenium(II) complex having carboxylic- or phosphonic acid anchoring groups for visible-light CO2 reduction. Chem Lett 45:182–184

    Article  CAS  Google Scholar 

  • Mei S, Gao J, Zhang Y, Yang J, Wu Y, Wang X, Zhao R, Zhai X, Hao C, Li R, Yan J. (2017) Enhanced visible light photocatalytic hydrogen evolution over porphyrin hybridized graphitic carbon nitride. Journal of Colloid and Interface Science 506:58-65. http://www.sciencedirect.com/science/article/pii/S002197971730797X

    Article  CAS  Google Scholar 

  • Min S, Lu G (2011) Dye-sensitized reduced graphene oxide photocatalysts for highly efficient visible-light-driven water reduction. J Phys Chem C 115:13938–13945. https://doi.org/10.1021/jp203750z

    Article  CAS  Google Scholar 

  • Min S, Lu G (2012) Enhanced electron transfer from the excited eosin Y to mpg-C3N4 for highly efficient hydrogen evolution under 550 nm irradiation. J Phys Chem C 116:19644–19652. https://doi.org/10.1021/jp304022f

    Article  CAS  Google Scholar 

  • Mori K, Itoh T, Kakudo H, Iwamoto T, Masui Y, Onaka M, Yamashita H (2015) Nickel-supported carbon nitride photocatalyst combined with organic dye for visible-light-driven hydrogen evolution from water. Phys Chem Chem Phys 17:24086–24091. https://doi.org/10.1039/C5CP04493F

    Article  CAS  PubMed  Google Scholar 

  • Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159–7329. https://doi.org/10.1021/acs.chemrev.6b00075

    Article  CAS  PubMed  Google Scholar 

  • O’regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737. https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  • Qian X-B, Peng W, Huang J-H (2018) Fluorescein-sensitized Au/g-C3N4 nanocomposite for enhanced photocatalytic hydrogen evolution under visible light. Mater Res Bull 102:362–368

    Article  CAS  Google Scholar 

  • Qin J, Huo J, Zhang P, Zeng J, Wang T, Zeng H (2016) Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation. Nanoscale 8:2249–2259. https://doi.org/10.1039/C5NR06346A

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Li Y, Chen S, Liu J, Zhang J, Wang P (2016) Improving the performance of dye-sensitized solar cells with electron-donor and electron-acceptor characteristic of planar electronic skeletons. Energy Environ Sci 9:1390–1399. https://doi.org/10.1039/C5EE03309H

    Article  CAS  Google Scholar 

  • Shi L, Wang T, Zhang H, Chang K, Ye J (2015) Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Adv Func Mater 25:5360–5367. https://doi.org/10.1002/adfm.201502253

    Article  CAS  Google Scholar 

  • Song S, Guo Y, Peng T, Zhang J, Li R (2016) Effects of the symmetry and carboxyl anchoring group of zinc phthalocyanine derivatives on g-C3N4 for photosensitized H2 production. RSC Adv 6:77366–77374. https://doi.org/10.1039/C6RA15890K

    Article  CAS  Google Scholar 

  • Takanabe K, Kamata K, Wang X, Antonietti M, Kubota J, Domen K (2010) Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine. Phys Chem Chem Phys 12:13020–13025. https://doi.org/10.1039/C0CP00611D

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Wang Y, Li X, Agren H, Zhu W H, Xie Y. (2015) Porphyrins containing a triphenylamine Donor and up to eight alkoxy chains for dye-sensitized solar cells: a high efficiency of 10.9%. ACS Appl Mater Interfaces 7:27976-85. http://www.ncbi.nlm.nih.gov/pubmed/26606858

  • Tian F-Y, Hou D, Tang F, Deng M, Qiao X-Q, Zhang Q, Wu T, Li D-S (2018) Novel Zn0.8Cd0.2S@g-C3N4 core–shell heterojunctions with a twin structure for enhanced visible-light-driven photocatalytic hydrogen generation. J Mater Chem A 6:17086–17094. https://doi.org/10.1039/C8TA05927F

    Article  CAS  Google Scholar 

  • Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2008) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76. https://doi.org/10.1038/nmat2317

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hong J, Zhang W, Xu R (2013) Carbon nitride nanosheets for photocatalytic hydrogen evolution: remarkably enhanced activity by dye sensitization. Catal Sci Technol 3:1703–1711. https://doi.org/10.1039/C3CY20836B

    Article  CAS  Google Scholar 

  • Wang S, Lin J, Wang X (2014) Semiconductor-redox catalysis promoted by metal-organic frameworks for CO2 reduction. Phys Chem Chem Phys 16:14656–14660. https://doi.org/10.1039/C4CP02173H

    Article  CAS  PubMed  Google Scholar 

  • Wang DH, Pan JN, Li HH, Liu JJ, Wang YB, Kang LT, Yao JN (2016) A pure organic heterostructure of μ-oxo dimeric iron(iii) porphyrin and graphitic-C3N4 for solar H2 roduction from water. J Mater Chem A 4:290–296. https://doi.org/10.1039/C5TA07278F

    Article  CAS  Google Scholar 

  • Wang P, Guan Z, Li Q, Yang J (2018a) Efficient visible-light-driven photocatalytic hydrogen production from water by using Eosin Y-sensitized novel g-C3N4/Pt/GO composites. J Mater Sci 53:774–786. https://doi.org/10.1007/s10853-017-1540-5

    Article  CAS  Google Scholar 

  • Wang P, Zong L, Guan Z, Li Q, Yang J (2018b) PtNi alloy cocatalyst modification of eosin Y-sensitized g-C3N4/GO hybrid for efficient visible-light photocatalytic hydrogen evolution. Nanoscale Res Lett 13:33. https://doi.org/10.1186/s11671-018-2448-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Liu D, Liu Q, Peng T, Li R, Zhou S (2019) Effects of the central metal ions on the photosensitization of metalloporphyrins over carbon nitride for visible-light-responsive H2 production. Appl Surf Sci 464:255–261

    Article  CAS  Google Scholar 

  • Wen J, Xie J, Chen X, Li X (2017) A review on g-C3N4-based photocatalysts. Appl Surf Sci 391:72–123

    Article  CAS  Google Scholar 

  • Wu Y-P, Zhou W, Zhao J, Dong W-W, Lan Y-Q, Li D-S, Sun C, Bu X (2017) Surfactant-assisted phase-selective synthesis of new cobalt MOFs and their efficient electrocatalytic hydrogen evolution reaction. Angewandte Chemie Int Edition 56:13001–13005. https://doi.org/10.1002/anie.201707238

    Article  CAS  Google Scholar 

  • Xie Y, Tang Y, Wu W, Wang Y, Liu J, Li X, Tian H, Zhu W-H (2015) Porphyrin cosensitization for a photovoltaic efficiency of 11.5%: a record for non-ruthenium solar cells based on iodine electrolyte. J Am Chem Soc 137:14055–14058. https://doi.org/10.1021/jacs.5b09665

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Li Y, Peng S, Lu G, Li S (2013) Eosin Y-sensitized graphitic carbon nitride fabricated by heating urea for visible light photocatalytic hydrogen evolution: the effect of the pyrolysis temperature of urea. Phys Chem Chem Phys 15:7657–7665. https://doi.org/10.1039/C3CP44687E

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Li Y, Peng S (2015) Photocatalytic hydrogen evolution over erythrosin B-sensitized graphitic carbon nitride with in situ grown molybdenum sulfide cocatalyst. Int J Hydrog Energy 40:353–362

    Article  CAS  Google Scholar 

  • Xu S, Zhou P, Zhang Z, Yang C, Zhang B, Deng K, Bottle S, Zhu H (2017) Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using O2 and a photocatalyst of co-thioporphyrazine bonded to g-C3N4. J Am Chem Soc 139:14775–14782. https://doi.org/10.1021/jacs.7b08861

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Lei Y, Liu X, Li Y, Deng W, Wang F, Min S (2018) Highly active dye-sensitized photocatalytic H2 evolution catalyzed by a single-atom Pt cocatalyst anchored onto g-C3N4 nanosheets under long-wavelength visible light irradiation. New J Chem 42:14083–14086. https://doi.org/10.1039/C8NJ02933D

    Article  CAS  Google Scholar 

  • Yang Z, Xu X, Liang X, Lei C, Cui Y, Wu W, Yang Y, Zhang Z, Lei Z (2017) Construction of heterostructured MIL-125/Ag/g-C3N4 nanocomposite as an efficient bifunctional visible light photocatalyst for the organic oxidation and reduction reactions. Appl Catal B Environ 205:42–54

    Article  CAS  Google Scholar 

  • Yao Z, Zhang M, Wu H, Yang L, Li R, Wang P (2015) Donor/acceptor indenoperylene dye for highly efficient organic dye-sensitized solar cells. J Am Chem Soc 137:3799–3802. https://doi.org/10.1021/jacs.5b01537

    Article  CAS  PubMed  Google Scholar 

  • Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau E W-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334:629-34. http://science.sciencemag.org/content/sci/334/6056/629.full.pdf

    Article  CAS  Google Scholar 

  • Youngblood WJ, Lee S-HA, Maeda K, Mallouk TE (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Acc Chem Res 42:1966–1973. https://doi.org/10.1021/ar9002398

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Zhang X, Zhuang C, Lin L, Li R, Peng T (2014) Syntheses of asymmetric zinc phthalocyanines as sensitizer of Pt-loaded graphitic carbon nitride for efficient visible/near-IR-light-driven H2 production. Phys Chem Chem Phys 16:4106–4114. https://doi.org/10.1039/C3CP54316A

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Wang Z, Zhang S, Yun K, Ye H, Gong X, Hua J, Tian H (2018) N-Annulated perylene-based organic dyes sensitized graphitic carbon nitride to form an amide bond for efficient photocatalytic hydrogen production under visible-light irradiation. Appl Catal B Environ 237:32–42

    Article  CAS  Google Scholar 

  • Zhang X, Jin Z, Li Y, Li S, Lu G (2009) Efficient photocatalytic hydrogen evolution from water without an electron mediator over Pt–Rose Bengal catalysts. J Phys Chem C 113:2630–2635. https://doi.org/10.1021/jp8085717

    Article  CAS  Google Scholar 

  • Zhang P, Wang Y, Yao J, Wang C, Yan C, Antonietti M, Li H (2011) Visible-light-induced metal-free allylic oxidation utilizing a coupled photocatalytic system of g-C3N4 and N-hydroxy compounds. Adv Synth Catal 353:1447–1451. https://doi.org/10.1002/adsc.201100175

    Article  CAS  Google Scholar 

  • Zhang M, Yao W, Lv Y, Bai X, Liu Y, Jiang W, Zhu Y (2014a) Enhancement of mineralization ability of C3N4 via a lower valence position by a tetracyanoquinodimethane organic semiconductor. J Mater Chem A 2:11432–11438. https://doi.org/10.1039/C4TA01471E

    Article  CAS  Google Scholar 

  • Zhang X, Yu L, Li R, Peng T, Li X (2014b) Asymmetry and electronic directionality: a means of improving the red/near-IR-light-responsive photoactivity of phthalocyanine-sensitized carbon nitride. Catal Sci Technol 4:3251–3260. https://doi.org/10.1039/C4CY00516C

    Article  CAS  Google Scholar 

  • Zhang X, Yu L, Zhuang C, Peng T, Li R, Li X (2014c) Highly asymmetric phthalocyanine as a sensitizer of graphitic carbon nitride for extremely efficient photocatalytic H2 production under near-infrared light. ACS Catal 4:162–170. https://doi.org/10.1021/cs400863c

    Article  CAS  Google Scholar 

  • Zhang H, Li S, Lu R, Yu A (2015a) Time-resolved study on xanthene dye-sensitized carbon nitride photocatalytic systems. ACS Appl Mater Interfaces 7:21868–21874. https://doi.org/10.1021/acsami.5b06309

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Zhang B, Yan J, Xue X, Peng X, Li Y, Yang Y, Ju C, Fan C, Feng Y (2015b) Synthesis of π-A-porphyrins and their photoelectric performance for dye-sensitized solar cells. Renew Energy 77:579–585

    Article  CAS  Google Scholar 

  • Zhang X, Peng T, Yu L, Li R, Li Q, Li Z (2015c) Visible/near-infrared-light-induced H2 production over g-C3N4 co-sensitized by organic dye and zinc phthalocyanine derivative. ACS Catal 5:504–510. https://doi.org/10.1021/cs5016468

    Article  CAS  Google Scholar 

  • Zhang J, Lu F, Qi S, Zhao Y, Wang K, Zhang B, Feng Y (2016a) Influence of various electron-donating triarylamine groups in BODIPY sensitizers on the performance of dye-sensitized solar cells. Dyes Pigments 128:296–303

    Article  CAS  Google Scholar 

  • Zhang T, Wang X, Huang X, Liao Y, Chen J (2016b) Bifunctional catalyst of a metallophthalocyanine-carbon nitride hybrid for chemical fixation of CO2 to cyclic carbonate. RSC Adv 6:2810–2818. https://doi.org/10.1039/C5RA21058E

    Article  CAS  Google Scholar 

  • Zhang P, Song T, Wang T, Zeng H (2017a) Effectively extending visible light absorption with a broad spectrum sensitizer for improving the H2 evolution of in situ Cu/g-C3N4 nanocomponents. Int J Hydrog Energy 42:14511–14521

    Article  CAS  Google Scholar 

  • Zhang P, Wang T, Zeng H (2017b) Design of Cu–Cu2O/g-C3N4 nanocomponent photocatalysts for hydrogen evolution under visible light irradiation using water-soluble Erythrosin B dye sensitization. Appl Surf Sci 391:404–414

    Article  CAS  Google Scholar 

  • Zhao Z, Sun Y, Dong F (2015) Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7:15–37. https://doi.org/10.1039/C4NR03008G

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, Pang H, Liu G, Li P, Liu H, Zhang H, Shi L, Ye J (2017) Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO2 reduction under visible light. Appl Catal B Environ 200:141–149

    Article  CAS  Google Scholar 

  • Zheng Y, Wang J, Zhang J, Peng T, Li R (2017) Syntheses of asymmetric zinc porphyrins bearing different pseudo-pyridine substituents and their photosensitization for visible-light-driven H2 production activity. Dalton Trans 46:8219–8228. https://doi.org/10.1039/C7DT01029J

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Wu Y-P, Wang X, Tian J-W, Huang D-D, Zhao J, Lan Y-Q, Li D-S (2018) Improved conductivity of a new Co(ii)-MOF by assembled acetylene black for efficient hydrogen evolution reaction. CrystEngComm 20:4804–4809. https://doi.org/10.1039/C8CE00921J

    Article  CAS  Google Scholar 

  • Zou Y, Wang X, Ai Y, Liu Y, Ji Y, Wang H, Hayat T, Alsaedi A, Hu W, Wang X (2016) β-Cyclodextrin modified graphitic carbon nitride for the removal of pollutants from aqueous solution: experimental and theoretical calculation study. J Mater Chem A 4:14170–14179. https://doi.org/10.1039/C6TA05958A

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 21606145), State Key Laboratory of Coordination Chemistry Foundation of Nanjing University (No. SKLCC1811).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaying Yan or Yang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Wen, L., Yan, J. et al. Dye-sensitized graphitic carbon nitride (g-C3N4) for photocatalysis: a brief review. Chem. Pap. 74, 389–406 (2020). https://doi.org/10.1007/s11696-019-00929-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-019-00929-0

Keywords

Navigation