Chemical Papers

, Volume 73, Issue 11, pp 2745–2748 | Cite as

Efficient synthesis of 5-bromo-2,3-dimethoxy-6-methyl-1,4-benzoquinone: key intermediate for preparing Coenzyme Q

  • Yong-Fu Qiu
  • Bin Lu
  • Yi-Yu Yan
  • Wan-Yue Luo
  • Jin WangEmail author
  • Xiao HuEmail author
Original Paper


The title compound, a key intermediate for preparing Coenzyme Qn family, was prepared in an excellent yield by a reaction sequence starting from the commercially available 3,4,5-trimethoxytoluene 1 via bromination, methoxylation and oxidation reactions. An 80% overall yield was demonstrated on a multi-gram scale.


Coenzyme Q 1,4-Benzoquinone Bromination 



This study was supported by the National Natural Science Foundation of China (nos. 31600740 and 81803353), the Natural Science Foundation of Jiangsu Province (BK20160443), the Six Talent Peaks Project in Jiangsu Province (SWYY-094), the Jiangsu Provincial Key Laboratory for Bioresources of Saline Soils (nos. JKLBS2016013 and JKLBS2017010) and the College students practice innovation training program of Yancheng Teachers University (Provincial key projects).

Supplementary material

11696_2019_826_MOESM1_ESM.doc (452 kb)
Supplementary material 1 (DOC 451 kb)


  1. Gueven N, Woolley K, Smith J (2015) Border between natural product and drug: comparison of the related benzoquinones idebenone and coenzyme Q10. Redox Biol 4:289–295. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Hu X, Qiu Q, Wang WL, Wang J (2017) Practical synthesis of 2-(4-benzyl-piperazin-1-ylmethyl)-5,6-dimethoxy-3-methyl-[1,4]benzoquinone hydrochloride. Res Chem Intermed 43:57–61. CrossRefGoogle Scholar
  3. Jung YS, Joe BY, Seong CM, Park NS (2000) Synthesis of ubiquinones utilizing Pd(0)-catalyzed Stille coupling. Bull Korean Chem Soc 21:463–464. CrossRefGoogle Scholar
  4. Liu X-Y, Long Y-T, Tian H (2015) New insight into photo-induced electron transfer with a simple ubiquinone-based triphenylamine model. RSC Adv 5:57263–57266. CrossRefGoogle Scholar
  5. Lu S, Li WW, Rotem D, Mikhailova E, Bayley H (2010) A primary hydrogen–deuterium isotope effect observed at the single-molecule level. Nat Chem 2:921. CrossRefPubMedGoogle Scholar
  6. Ma W, Zhou H, Ying Y-L, Li D-W, Chen G-R, Long Y-T, Chen H-Y (2011) In situ spectroeletrochemistry and cytotoxic activities of natural ubiquinone analogues. Tetrahedron 67:5990–6000. CrossRefGoogle Scholar
  7. Onoue S, Uchida A, Kuriyama K, Nakamura T, Seto Y, Kato M, Hatanaka J, Tanaka T, Miyoshi H, Yamada S (2012) Novel solid self-emulsifying drug delivery system of coenzyme Q10 with improved photochemical and pharmacokinetic behaviors. Eur J Pharm Sci 46:492–499. CrossRefPubMedGoogle Scholar
  8. Wang J, Yang J, Yang B, Hu X, Sun JQ, Yang T (2010a) A green and efficient synthesis of 1-chloromethyl -2,3,4,5-tetramethoxy-6-methylbenzene. J Chem Res 34(712):717–718. CrossRefGoogle Scholar
  9. Wang J, Yang J, Yang B, Sun J-Q, Yang T (2010b) Alternative synthesis of 5-chloromethyl-2,3-dimethoxy-6-methyl-1,4-benzoquinone. J Chem Res 34:724–725. CrossRefGoogle Scholar
  10. Wang J, Hu X, Yang J (2014a) Two-step synthesis of 2-(9-hydroxynonyl)-5,6-dimethoxy-3-methyl-1,4-benzoquinone. Synthesis 46:2371–2375. CrossRefGoogle Scholar
  11. Wang J, Li S, Yang T, Yang J (2014b) Synthesis and antioxidant activities of Coenzyme Q analogues. Eur J Med Chem 86:710–713. CrossRefPubMedGoogle Scholar
  12. Wang J, Xia F, Jin W-B, Guan J-Y, Zhao H (2016) Efficient synthesis and antioxidant activities of N-heterocyclyl substituted Coenzyme Q analogues. Bioorg Chem 68:214–218. CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.School of Pharmacy, Jiangsu Key Laboratory for Bioresources of Saline SoilsYancheng Teachers UniversityYanchengPeople’s Republic of China
  2. 2.Library of Yancheng Teachers UniversityYanchengPeople’s Republic of China

Personalised recommendations