Skip to main content
Log in

Improved environmental stability of HTM free perovskite solar cells by a modified deposition route

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A three-step sequential deposition route (TSDR) is proposed for the growth of perovskite crystals. By this way, a compact perovskite layer containing large crystal grains is formed. The layer is thicker (~ 1.0 µm) with good coverage of substrate compared to those deposited by conventional two-step or sequential deposition route (SDR). Photovoltaic performance of solar cells containing perovskite crystals grown by TSDR-I improves in a longer time (more than 30 days) compared to those fabricated by conventional SDR. In other words, a simple modification (growth of perovskite crystals in two steps) considerably enhances the thickness and compactness of the photo absorber layer containing dominantly large crystals including the lower amount of PbI2 in the core of perovskite grains. Presence of large perfect crystals forming compact perovskite layer inhibits the penetration of the oxygen or humidity deeply inside the film give rise to higher stable performance of the fabricated sample cells. On the other hand in a reverse way (TSDR-II), it is very interesting that dipping the PbI2 layer in high and then low concentration MAI solutions and applying an annealing process between each dipping step results in a very small perovskite crystal grains (~ 70 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahn N, Kang MS, Lee JW et al (2015) Thermodynamic regulation of CH3NH3PbI3 crystal growth and its effect on photovoltaic performance of perovskite solar cell. J Mater Chem 3(39):19901–19906

    Article  CAS  Google Scholar 

  • Babayigit A, Ethirajan A, Muller M et al (2016a) Toxicity of organometal halide perovskite solar cells. Nat Mater 15(3):247–251

    Article  CAS  PubMed  Google Scholar 

  • Babayigit A, Thanh DD, Ethirajan A et al (2016b) Assessing the toxicity of Pb-and Sn-based perovskite solar cells in model organism Danio rerio. Sci Rep 6(1):18721–18731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai S, Sakai N, Zhang W et al (2017) Reproducible planar heterojunction solar cells based on one-step solution-processed methylammonium lead halide perovskites. Chem Mater 29(1):462–473

    Article  CAS  Google Scholar 

  • Baikie T, Fang Y, Kadro JM et al (2013) Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3for solid-state sensitised solar cell applications. J Mater Chem A 1(18):5628–5641

    Article  CAS  Google Scholar 

  • Bella F, Renzi P et al (2018) Caesium for perovskite solar cells: an overview chemistry. Eur J 24(47):1–24

    Google Scholar 

  • Bi D, Yang L, Boschloo G et al (2013) Effect of different hole transport materials on recombination in CH3NH3PbI3 Perovskite sensitized mesoscopic solar cells. J Phys Chem Lett 4(9):1532–1536

    Article  CAS  PubMed  Google Scholar 

  • Calado P, Telford AM, Bryant D et al (2016) Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat Commun 7(1):13831–13840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Yang S (2017) Carbon-based perovskite solar cells without hole transport materials: the front runner to the market? Adv Mater 29(24):1603410–1603994

    Google Scholar 

  • Chen Z, Dong Q, Liu Y et al (2017a) Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nat Commun 8(1):1890–1897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Song J, Huang F et al (2017b) The role of synthesis parameters on crystallization and grain size in hybrid halide perovskite solar cells. J Phys Chem C 121(32):17053–17061

    Article  CAS  Google Scholar 

  • Chen Q, Zhou H, Hong Z et al (2013) Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc 136(2):622–625

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Wan L, Kong M et al (2018) Influence of Rutile-TiO2 nanorod arrays on Pb-free (CH3NH3)3Bi2I9-based hybrid perovskite solar cells fabricated through two-step sequential solution process. J Alloys Compd 738:422–431

    Article  CAS  Google Scholar 

  • Cohen BE, Etgar L (2016) Parameters that control and influence the organo-metal halide perovskite crystallization and morphology. Front Optoelectron 9(1):44–52

    Article  Google Scholar 

  • Correa-Baena JP, Abate A, Saliba M et al (2017) The rapid evolution of highly efficient perovskite solar cells. Energy Environ Sci 10(3):710–727

    Article  CAS  Google Scholar 

  • Dualeh A, Tétreault N, Moehl T et al (2014) Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid state solar cells. Adv Funct Mater 24(21):3250–3258

    Article  CAS  Google Scholar 

  • Fan P, Gu D, Liang GX et al (2016) High performance perovskite CH3NH3PbI3 thin films for solar cells prepared by single-source physical vapour deposition. Sci Rep 6(1):29910–29919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Bao C, Li F et al (2015) Nucleation and crystal growth of organic-inorganic lead halide perovskites under different relative humidity. ASC Appl Mater Interfaces  7(17):9110–9117

    Article  CAS  Google Scholar 

  • Gratzel M (2014) The Light and shade of perovskite solar cells. Nat Mater 13(9):838–842

    Article  CAS  PubMed  Google Scholar 

  • Graetzel M, Janssen JR, Mitzi BD et al (2012) Materials interface engineering for solution-processed photovoltaics. Nat 488(7411):304–312

    Article  CAS  Google Scholar 

  • Hawash Z, Ono LK et al (2017) Recent advances in spiro-MeOTAD hole transport material and its applications in organic-inorganic halide perovskite solar cells. Adv Mater Interfaces 5(1):1700623–1700654

    Article  CAS  Google Scholar 

  • Hodes G, Kamat PV (2015) Understanding the implication of carrier diffusion length in photovoltaic cells. J Phys Chem Lett 6(20):4090–4092

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Xue Q, Chen B et al (2017) Top-down fabrication of stable methylammonium lead halide perovskite nanocrystals by employing a mixture of ligands as coordinating solvents. Angew Chemie Int Ed 56(32):9571–9576

    Article  CAS  Google Scholar 

  • Ishikawa R, Watanabe S, Yamazaki S et al (2019) Perovskite/graphene solar cells without a hole-transport layer. ACS Appl Energy Mater 2(1):171–175

    Article  CAS  Google Scholar 

  • Jacobsson JT, Correa-Baena JP, Anaraki EH et al (2016) Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J Am Chem Soc 138(32):10331–10343

    Article  CAS  PubMed  Google Scholar 

  • Jahanbakhshi Zadeh N, Borhani Zarandi M, Nateghi MR (2018) Effect of crystallization strategies on CH3NH3PbI3 perovskite layer deposited by spin coating method: dependence of photovoltaic performance on morphology evolution. Thin Solid Films  660:65–74

    Article  CAS  Google Scholar 

  • Jahanbakhshi Zadeh N, Borhani Zarandi M, Nateghi MR (2019) Optical properties of the perovskite films deposited on meso-porous TiO2 by one step and hot casting techniques. Thin Solid Films 671:139–146

    Article  CAS  Google Scholar 

  • Kara K, Kara D, Kirbyk C et al (2016) Solvent washing with toluene enhances efficiency and increases reproducibility in perovskite solar cells. RSC Adv 6(32):26606–26611

    Article  CAS  Google Scholar 

  • Kim S, Chung T, Bae S et al (2017) Improved performance and thermal stability of perovskite solar cells prepared via a modified sequential deposition process. Org Electron 41:266–273

    Article  CAS  Google Scholar 

  • Kojima A, Teshima K, Shirai Y et al (2009) Organometal halide perovskites as visible- light sensitizers or photovoltaic cells. J Am Chem Soc 131(17):6050–6051

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Bae HS, Marco DN et al (2017) The role of grain boundaries in perovskite solar cells. Mater Today Energy 7:149–160

    Article  Google Scholar 

  • Lei B, Eze OV, Mori T (2016) Effect of morphology control of light absorbing layer on CH3NH3PbI3 perovskite solar cells. J Nanosci Nanotechnol 16(4):3176–3182

    Article  CAS  PubMed  Google Scholar 

  • Li D, Bretschneider AS, Bergmann VW et al (2016) Humidity-induced grain boundaries in MAPbI3 perovskite films. J Phys Chem C 120(12):6363–6368

    Article  CAS  Google Scholar 

  • Li M, Yan X, Kang Z et al (2017a) Enhanced efficiency and stability of perovskite solar cells via anti-solvent treatment in two-step deposition method. ACS Appl Mater Interfaces 9:7224–7231

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li H, Zhong C et al (2017b) Characterization of intrinsic hole transport in single-crystal spiro-OMeTAD. npj Flexible Electronics 1(1):2

    Article  Google Scholar 

  • Liu D, Gangishetty KM, Kelly LT (2014) Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells. J Mater Chem A 2(46):19873–19881

    Article  CAS  Google Scholar 

  • Liu Z, Zhang M, Xu X et al (2015) p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Trans 44(9):3967–3973

    Article  CAS  PubMed  Google Scholar 

  • Nakar R, Cho AN, Berton N et al (2018) Triphenylamine 3,6-carbazole derivative as hole-transporting material for mixed cation perovskite solar cells. Chem Pap 72(7):1779–1787

    Article  CAS  Google Scholar 

  • Okamoto Y, Suzuki Y (2017) Perovskite solar cells prepared by a new 3-step method including a PbI2 scavenging step. Mat Sci Semicon Proc 71:1–6

    Article  CAS  Google Scholar 

  • Ono LK, Raga RS, Remeika M et al (2015) Pinhole-free hole transport layers significantly improve the stability of MAPbI3 -based perovskite solar cells under operating conditions. J Mater Chem A 3:15451–15456

    Article  CAS  Google Scholar 

  • Patel BJ, Milot LR, Wright D et al (2016) Formation dynamics of CH3NH3PbI3 perovskite following two-step layer deposition. J Phys Chem Lett 7(1):96–102

    Article  CAS  PubMed  Google Scholar 

  • Rahul Singh KP, Singh R et al (2017) Effect of crystal and powder of CH3NH3I on the CH3NH3PbI3 based perovskite sensitized solar cell. Mater Res Bull 89:292–296

    Article  CAS  Google Scholar 

  • Salado M, Contreras-Bernal L, Caliò L et al (2017) Impact of moisture on efficiency-determining electronic processes in perovskite solar cells. J Mater Chem AA 5(22):10917–10927

    Article  CAS  Google Scholar 

  • Salado M, Kazim S, Ahmad S (2018) The role of Cs + inclusion in formamidinium lead triiodide-based perovskite solar cell.  Chem Pap 72(7):1645-1650

    Article  CAS  Google Scholar 

  • Shao F, Xu L, Tian Z et al (2016) A modified two-step sequential deposition method for preparing perovskite CH3NH3PbI3 solar cells. RSC Adv 6(48):42377–42381

    Article  CAS  Google Scholar 

  • Tenuta E, Zheng C et al (2016) Thermodynamic origin of instability in hybrid halide perovskites. Sci Rep 6(1):37654–37661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong Y, Bladt E, Aygüler FM et al. (2016) Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew Chemie Int Ed 55(44):13887–13892

    Article  CAS  Google Scholar 

  • Wehrenfennig C, Eperon EG, Johnston BM et al. (2014) High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater  26(10):1584–1589

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Dong Q, Bi C et al (2014) Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv Mater 26(37):6503–6509

    Article  CAS  PubMed  Google Scholar 

  • Yao Z, Wang W, Shen H et al (2017) CH3NH3PbI3 grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition. Sci Technol Adv Mater 18(1):253–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye F, Yang W et al (2017) Applications of cesium in the perovskite solar cells. J Semicond 38(1):011003–011041

    Article  CAS  Google Scholar 

  • Yue S, Liu K, Xu R et al (2017) Efficacious engineering on charge extraction for realizing high-efficient perovskite solar cells. Energy Environ Sci 10(12):2570–2578

    Article  CAS  Google Scholar 

  • Zhang H, Wang H, Williams TS et al (2017) SrCl2 Derived perovskite facilitating a high efficiency of 16% in hole-conductor-free fully printable mesoscopic perovskite solar cells. Adv Mater 29(15):1606608–1606616

    Article  CAS  Google Scholar 

  • Zheng L, Ma Y, Chu S et al (2014) Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition. Nanoscale 6(14):8171–8176

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Yang M, Wu W et al (2015) Room temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. J Mater Chem A 3(15):8178–8184

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Borhani Zarandi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, Z., Zarandi, M.B. & Nateghi, M.R. Improved environmental stability of HTM free perovskite solar cells by a modified deposition route. Chem. Pap. 73, 2667–2678 (2019). https://doi.org/10.1007/s11696-019-00818-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-019-00818-6

Keywords

Navigation