Skip to main content
Log in

APTES (3-aminopropyltriethoxy silane) functionalized MnFe2O4 nanoparticles: a potential material for magnetic fluid hyperthermia

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles have the potential to be used for biomedical applications, specifically in painless curing of cancer. The primary objective of this article is to prepare 3-aminopropyltriethoxy silane (APTES) functionalized magnetic nanoparticles by using polyol synthesis method in order to use them for magnetic hyperthermia application. The obtained magnetic nanoparticles were characterized by using X-ray diffraction, scanning electron microscope, transmission electron microscopy, vibrating sample magnetometry, fourier transform infrared spectroscopy and thermogravimetric analysis techniques for structural, morphological and magnetic analysis. Structural analysis showed that the mean crystallite size of prepared nanoparticles was about 13 nm and magnetic study exhibited that the bare and functionalized nanoparticles were superparamagnetic at room temperature. Induction heating study was performed by applying external AC magnetic field of 167.6–335.2 Oe at a fixed frequency of 265 kHz to assess the feasibility for magnetic hyperthermia anticancer therapy. Maximum specific absorption rate 261.53 W g−1 has observed at 335.2 Oe (265 kHz) for APTES coated nanoparticles. Cell viability study revealed that APTES functionalized MnFe2O4 nanoparticles can be potential heating agent for cancer hyperthermia therapy as nanoparticles have almost no toxicity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adio SO, Omar MH, Asif M, Saleh TA (2017) Arsenic and selenium removal from water using biosynthesized nanoscale zero-valent iron: a factorial design analysis. Process Saf Environ 107(518):527

    Google Scholar 

  • Adio SO, Asif M, Rashid AI, Baig N, Al-Arfaj AA, Saleh TA (2019) Poly (amidoxime) modified magnetic activated carbon for chromium and thallium adsorption: statistical analysis and regeneration. Process Saf Environ 121:254–262

    Article  CAS  Google Scholar 

  • Al-Shalalfeh MM, Saleh TA, Al-Saadi AA (2016) Silver colloid and film substrates in surface enhanced Raman scattering for 2-thiouracil detection. RSC Adv 6(79):75282–75292

    Article  CAS  Google Scholar 

  • Alswat AA, Ahmad MB, Saleh TA (2016) Zeolite modified with copper oxide and iron oxide for lead and arsenic adsorption from aqueous solutions. J Water Supply Res T 65(6):465–479

    Article  Google Scholar 

  • Barick KC, Aslam M, Prasad PV, Dravid VP, Bahadur D (2009) Nanoscale assembly of amine-functionalized colloidal iron oxide. J Magn Magn Mater 321:1529–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batlle X, Labarta A (2002) Finite-size effects in fine particles: magnetic and transport properties. J Phys D Appl Phys 35(6):R15–R42

    Article  CAS  Google Scholar 

  • Beji Z, Hanini A, Smiri LS, Gavard J, Kacem K, Villain F, Grenèche JM, Chau F, Ammar S (2010) Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on Endothelial cells. Chem Mater 22:5420–5429

    Article  CAS  Google Scholar 

  • Bramhill J, Ross S, Ross G (2017) Bioactive nanocomposites for tissue repair and regeneration: a review. Int J Environ Res Public Health 14:66

    Article  CAS  PubMed Central  Google Scholar 

  • Cai W, Wan J (2007) Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci 305:366–370

    Article  CAS  PubMed  Google Scholar 

  • Cao H, He J, Deng L, Gao X (2009) Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core–shell nanoparticles via layer-by-layer method. Appl Surf Sci 255:7974–7980

    Article  CAS  Google Scholar 

  • Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y (2013) Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm 10:2093–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davarana S (2013) Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids Surf B 102:534–539

    Article  CAS  Google Scholar 

  • Feng B, Hong RY, Wang LS, Guo L, Li HZ, Ding J, Zheng Y, Wei DG (2008) Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging. Colloids Surf A 328:52–59

    Article  CAS  Google Scholar 

  • Ghosh R, Pradhan L, Devi YP, Meena SS, Tewari R, Kumar A, Sharma S, Gajbhiye NS, Vatsa RK, Pandey BN, Ningthoujam RS (2011) Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J Mater Chem 21:13388–13398

    Article  CAS  Google Scholar 

  • Guo P, Zhang G, Yu J, Li H, Zhao XS (2012) Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nanocrystal clusters of manganese ferrite. Colloids Surf A 395:168–174

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  PubMed  Google Scholar 

  • Hachani R, Lowdell M, Birchall M, Hervault A, Mertz D, Begin-Colin S, Thanh NT (2016) Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale 8:3278–3287

    Article  CAS  PubMed  Google Scholar 

  • Haruna K, Saleh TA, Thagfi JA, Saadi AA (2016) Structural properties, vibrational spectra and surface-enhanced Raman scattering of 2,4,6-trichloro- and tribromoanilines: a comparative study. J Mol Struct 1121:7–15

    Article  CAS  Google Scholar 

  • Hergt R, Dutz S, Zeisberger M (2009) Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia. Nanotechnology 21:015706

    Article  CAS  PubMed  Google Scholar 

  • Indira TK, Lakshmi PK (2010) Magnetic nanoparticles—a review. Int J Pharm Sci Nanotechnol 3:1035–1042

    CAS  Google Scholar 

  • Kim DK, Amin MS, Elborai S, Lee SH, Koseoglu Y, Zahn M, Muhammed M (2005) Energy absorption of superparamagnetic iron oxide nanoparticles by microwave irradiation. J Appl Phys 97:10510

    Google Scholar 

  • Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudi M, Simchi A, Imani M, Häfeli U (2009) Superparamagnetic iron oxide nanoparticles with rigid cross-linked polyethylene glycol fumarate coating for application in imaging and drug delivery. J Phys Chem C 113:8124–8131

    Article  CAS  Google Scholar 

  • Maity D, Kale SN, Kaul-Ghanekar R, Xue J, Ding J (2009) Studies of magnetite nanoparticles synthesized by thermal decomposition of iron(III) acetylacetonate in tri(ethylene glycol). J Magn Magn Mater 321:3093–3098

    Article  CAS  Google Scholar 

  • Mashhadizadeh MH, Amoli-Diva M (2010) Drug-carrying amino silane coated magnetic nanoparticles as potential vehicles for delivery of antibiotics. J Nanomed Nanotechol 3:139

    Google Scholar 

  • Muela A, Muñoz D, Martín-Rodríguez R, Orue I, Garaio E, Díaz de Cerio AA, Alonso J, García JA, Fdez-Gubieda ML (2016) Optimal parameters for hyperthermia treatment using biomineralized magnetite nanoparticles: theoretical and experimental approach. J Phys Chem C 120:24437–24448

    Article  CAS  Google Scholar 

  • Phadatare MR, Meshram JV, Gurav KV, Kim JH, Pawar SH (2016) Enhancement of specific absorption rate by exchange coupling of the core–shell structure of magnetic nanoparticles for magnetic hyperthermia. J Phys D 49:9

    Article  CAS  Google Scholar 

  • Presa P, Luengo Y, Multigner M, Costo R, Morales MP, Rivero G, Hernando A (2012) Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. J Phys Chem C 116:25602–25610

    Article  CAS  Google Scholar 

  • Rittich B, Španová A, Horák D, Beneš MJ, Klesnilová L, Petrová K, Rybnikář A (2006) Isolation of microbial DNA by newly designed magnetic particles. Colloids Surf B 52:143–148

    Article  CAS  Google Scholar 

  • Sahoo B, Sahu SK, Nayak S, Dhara D, Pramanik P (2012) Fabrication of magnetic mesoporous manganese ferrite nanocomposites as efficient catalyst for degradation of dye pollutants. Catal Sci Technol 2:367–1374

    Article  CAS  Google Scholar 

  • Saleh TA, Al-Absi AA (2017) Kinetics, isotherms and thermodynamic evaluation of amine functionalized magnetic carbon for methyl red removal from aqueous solutions. J Mol Liq 248:577–585

    Article  CAS  Google Scholar 

  • Salunkhe AB, Khot VM, Pawar SH (2014) Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr Top Med Chem 14:572–594

    Article  CAS  PubMed  Google Scholar 

  • Smith EA, Chen W (2008) How to prevent the loss of surface functionality derived from aminosilanes. Langmuir 24:12405–12409

    Article  CAS  PubMed  Google Scholar 

  • Waje SB, Hashim M, Yusoff WD, Abbas Z (2010) X-ray diffraction studies on crystallite size evolution of CoFe2O4 nanoparticles prepared using mechanical alloying and sintering. Appl Surf Sci 256:3122–3127

    Article  CAS  Google Scholar 

  • Xuan S, Wang F, Wang YJ, Yu JC, Leung KC (2010) Facile synthesis of size-controllable monodispersed ferrite nanospheres. J Mater Chem 20:5086–5094

    Article  CAS  Google Scholar 

  • Yamauraa M, Camilo RL, Sampaio LC, Macêdo MA, Nakamura M, Toma HE (2004) Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J Magn Magn Mater 279:210–217

    Article  CAS  Google Scholar 

  • Yang H, Zhang C, Shi X, Hu H, Du X, Fang Y, Ma Y, Wu X, Yang S (2010) Water-soluble superparamagnetic manganese ferrite nanoparticles for magnetic resonance imaging. Biomaterials 31:3667–3673

    Article  CAS  PubMed  Google Scholar 

  • Zborowski M, Chalmers JJ, Lowrie WG (2017) Magnetic cell manipulation and sorting. In: Microsystems and nanosystems. Springer, Cham, pp 15–55

Download references

Acknowledgements

The magnetic measurements were performed at UGC-DAE Consortium for Scientific Research, Indore. Authors are very much thankful to Dr. Alok Banergee, UGC-DAE, CSR Indore for VSM analysis.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Pawar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghutepatil, P.R., Salunkhe, A.B., Khot, V.M. et al. APTES (3-aminopropyltriethoxy silane) functionalized MnFe2O4 nanoparticles: a potential material for magnetic fluid hyperthermia. Chem. Pap. 73, 2189–2197 (2019). https://doi.org/10.1007/s11696-019-00768-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-019-00768-z

Keywords

Navigation