Chemical Papers

, Volume 73, Issue 5, pp 1163–1172 | Cite as

UV light-induced photocatalytic, antimicrobial, and antibiofilm performance of anodic TiO2 nanotube layers prepared on titanium mesh and Ti sputtered on silicon

  • Martin MotolaEmail author
  • Ewa Dworniczek
  • Leonid Satrapinskyy
  • Grzegorz Chodaczek
  • Jakub Grzesiak
  • Maroš Gregor
  • Tomáš Plecenik
  • Joanna Nowicka
  • Gustav Plesch
Original Paper


The potential use of TiO2 nanotube layers as a self-sterilizing and self-cleaning material for environmental application is presented. Antimicrobial, antibiofilm and photocatalytic performance of anodic TiO2 nanotube layers under UV irradiation was investigated on titanium mesh and on Ti sputtered on silicon substrates. The nanotubes were prepared in fluoride containing ethylene glycol-based electrolyte to obtain ~ 4 µm thick nanotube layers, which were subsequently annealed at 450 °C. Structural and morphological properties of prepared TiO2 layers were characterized using X-ray diffraction, scanning electron microscopy and atomic force microscopy. In addition, their surface wettability, before and after UV irradiation, was investigated. Their photoactivity was compared to TiO2 sol–gel films of similar thickness. The highest efficiency in photocatalytic degradation of organic dye and removal of free-floating bacteria of Gram-positive Staphylococcus epidermidis was observed for TiO2 nanotube layers on titanium mesh. The highest antibiofilm performance in impairments of biofilms was reached using the TiO2 nanotubes on silicon. The obtained results on silicon substrate are promising for the development of medical devices covered by TiO2 nanotubes that would decrease the risk of infection. On the other hand, the mesh substrate covered by TiO2 nanotubes could find environmental applications such as filters in flowing photocatalytic reactors.

Graphical Abstract


TiO2 Nanotubes Photocatalytic Antimicrobial Antibiofilm 



This work was supported by Scientific Grant Agency of the Slovak Republic (Project VEGA 1/0276/15), by Statutory research of Wrocław Medical University (ST.A.130.16.032); by Ministry of Education, Youth and Sports of the Slovak republic in the framework of the targeted support of the project LO1201 “National Programme for Sustainability I”; by the OPR&DI project Centre for Nanomaterials and by Operational Program Research; by the Grant Agency for Science and Development (APVV 17-0324) and Development (Project ITMS26210120010 and ITMS 26240220027). Assistance of Alicja Seniuk in microbiological experiments is highly acknowledged.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Afsari M, Youzbashi AA, Nuranian H, Zahraee SM (2017) Remarkable improvement of visible light photocatalytic activity of TiO2 nanotubes doped sequentially with noble metals for removing of organic and microbial pollutants. Mater Res Bull 94:15–21. CrossRefGoogle Scholar
  2. Ahmad R, Kumar R (2010) Adsorption studies of hazardous malachite green onto treated ginger waste. J Environ Manag 91:1032–1038. CrossRefGoogle Scholar
  3. Albu SP, Ghicov A, Macak JM, Schmuki P (2007) 250 µm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys Status Solidi-R 1:R65–R67. CrossRefGoogle Scholar
  4. Balaur E, Macak JM, Taveira L, Schmuki P (2015) Tailoring the wettability of TiO2 nanotube layers. Electrochem Commun 7:1066–1070. CrossRefGoogle Scholar
  5. Banerjee S, Dionysiou DD, Pillai SC (2015) Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl Catal B Environ 176–177:396–428. CrossRefGoogle Scholar
  6. Barka N, Qourzal S, Assabbane A, Nounah A, Ait-Ichou Y (2010) Photocatalytic degradation of an azo reactive dye, reactive yellow 84, in water using an industrial titanium dioxide coated media. Arab J Chem 3:279–283. CrossRefGoogle Scholar
  7. Beranek R, Tsuchiya H, Sugishima T, Macák JM, Taveira L, Fujimoto S, Kisch H, Schmuki P (2005) Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes. Appl Phys Lett 87:243114. CrossRefGoogle Scholar
  8. Berrios M, Martin MA, Martin A (2012) Treatment of pollutants in wastewater: adsorption of methylene blue onto olive-based activated carbon. J Ind Eng Chem 18:780–784. CrossRefGoogle Scholar
  9. Bouras P, Statathos E, Lianos P, Tsakiroglou C (2004) Photodegradation of Basic Blue by highly efficient nanocrystalline titania films. Appl Catal B-Environ 51:275–281. CrossRefGoogle Scholar
  10. Bridier A, Sanchez-Vizuete P, Guilbaud M, Piard JC, Naitali M, Briandet R (2015) Biofilm-associated persistence of food-borne pathogens. Food Microbiol 45:167–178. CrossRefGoogle Scholar
  11. Cipriano AF, Miller C, Liu H (2014) Anodic growth and biomedical applications of TiO2 nanotubes. J Biomed Nanotechnol 10:2977–3003. CrossRefGoogle Scholar
  12. Cruces R, Alonso B, Perez A, Sanchez-Carillo C, Guembe M (2017) Comparison of the XTT and resazurin assays for quantification of the metabolic activity of Staphylococcus aureus biofilm. J Microbiol Methods 139:135–137. CrossRefGoogle Scholar
  13. Das S, Zazpe R, Prikryl J, Knotek P, Krbal M, Sopha H, Podzemna V, Macak JM (2016) Influence of annealing temperatures on the properties of low aspect-ratio TiO2 nanotube layers. Electrochim Acta 213:452–459. CrossRefGoogle Scholar
  14. Donlan RM (2003) Medical biofilms. Detection, prevention and control—chapter 2.1 Problems of biofilms associated with medical devices and implants. Wiley ISBN 978-0-471-98867-0Google Scholar
  15. Elahmadi MF, Bensalah N, Gadri A (2009) Treatment of aqueous wastes contaminated with Congo Red dye by electrochemical oxidation and ozonation processes. J Hazard Mater 168:1163–1169. CrossRefGoogle Scholar
  16. Erdem A, Metzler D, Cha DK, Huang CP (2015) The short-term toxic effects of TiO2 nanoparticles toward bacteria through viability, cellular respiration, and lipid peroxidation. Environ Sci Pollut Res 22:17917–17924. CrossRefGoogle Scholar
  17. Faraji M, Mohaghegh N, Abedini A (2018) Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity. J Photochem Photobiol B 178:124–132. CrossRefGoogle Scholar
  18. Ganguly P, Byrne C, Breen A, Pillai SC (2018) Antimicrobial activity of photocatalysts: fundamentals, mechanisms, kinetics and recent advances. Appl Catal B Environ 225:51–75. CrossRefGoogle Scholar
  19. Garcia-Perez JE, Mathé L, Humblet-Baron S, Braem A, Lagrou D, Van Dijck P, Liston A (2018) A framework for understanding the evasion of host immunity by Candida biofilms. Front Immunol 9:538–542. CrossRefGoogle Scholar
  20. Gaya UI (2014) Heterogeneous photocatalysis using inorganic semiconductor solids. Springer ISBN 978-94-007-7775-0Google Scholar
  21. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C 9:1–12. CrossRefGoogle Scholar
  22. Ghicov A, Tsuchiya H, Macak JM, Schmuki P (2006) Annealing effects on the photoresponse of TiO2 nanotubes. Phys Stat Solidi (a) 203:R28–R30. CrossRefGoogle Scholar
  23. Gulati K, Santos A, Findlay D, Losic D (2015) Optimizing anodization conditions for the growth of titania nanotubes on curved surfaces. J Phys Chem C 119:16033–16045. CrossRefGoogle Scholar
  24. Jalvo B, Faraldos M, Bahamonde A, Rosal R (2017) Antimicrobial and antibiofilm efficacy of self-cleaning surfaces functionalized by TiO2 photocatalytic nanoparticles against Staphylococcus aureus and Pseudomonas putida. J Hazard Mater 340:160–170. CrossRefGoogle Scholar
  25. Kalbacova M, Macak JM, Schmidt-Stein F, Mierke CT, Schmuki P (2008) TiO2 nanotubes: photocatalyst for cancer killing. Phys Status Solidi-R 2:194–196. CrossRefGoogle Scholar
  26. Kar A, Smith YR, Subramanian VR (2009) Improved photocatalytic degradation of textile dye using titanium dioxide nanotubes formed over titanium wires. Environ Sci Technol 43:3260–3265. CrossRefGoogle Scholar
  27. Khadhraoui M, Trabelsi H, Ksibi M, Bouguerra S, Elleuch B (2009) Discoloration and detoxification of a Congo red dye solution by means of ozone treatment for a possible water reuse. J Hazard Mater 161:974–981. CrossRefGoogle Scholar
  28. Khodaire M, Ghasemi N, Moradi B, Rahimi M (2013) Removal of methylene blue from wastewater by adsorption onto ZnCl2 activated corn husk carbon equilibrium studies. J Chem 2013:1–6. CrossRefGoogle Scholar
  29. Liao J, Lin S, Zhang L, Pan NQ, Cao X, Li J (2012) Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays. ACS Appl Mater Interfaces 4:171–177. CrossRefGoogle Scholar
  30. Liu Z, Subramania V, Misra M (2009) Vertically oriented TiO2 nanotube arrays grown on Ti meshes for flexible dye-sensitized solar cells. J Phys Chem C 113:4028–14033. CrossRefGoogle Scholar
  31. Liu Z, Zhang Q, Zhao T, Zhai J, Jiang L (2011) 3-D vertical arrays of TiO2 nanotubes on Ti meshes: efficient photoanodes for water photoelectrolysis. J Mater Chem 21:10354–10358. CrossRefGoogle Scholar
  32. Lorenzetti M, Biglino D, Novak S, Kobe S (2014) Photoinduced properties of nanocrystalline TiO2-anatase coating on Ti-based bone implants. Mater Sci Eng C 37:390–398. CrossRefGoogle Scholar
  33. Lorenzetti M, Dogsa I, Stosicki T, Stopar D, Kalin M, Kobe S, Novak S (2015) The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl Mater Interfaces 7:1644–1651. CrossRefGoogle Scholar
  34. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007a) TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 11:3–18. CrossRefGoogle Scholar
  35. Macak JM, Zlamal M, Krysa J, Schmuki P (2007b) Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3:300–304. CrossRefGoogle Scholar
  36. Malato S, Fernandez-Ibanez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59. CrossRefGoogle Scholar
  37. Michal R, Dworniczek E, Caplovicova M, Gregor M, Caplovic L, Seniuk A, Kus P, Plesch G (2014) Photocatalytic and photodisinfectant activity of sulfated and Eu doped anatase against clinically important microorganisms. Ceram Int 40:5745–5756. CrossRefGoogle Scholar
  38. Mondal S (2008) Methods of dye removal from dye house effluent—an overview. Environ Eng Sci 25:383–396. CrossRefGoogle Scholar
  39. Motola M, Satrapinskyy L, Roch T, Subrt J, Kupcik J, Klementova M, Jakubickova M, Peterka F, Plesch G (2017) Anatase TiO2 nanotube arrays and titania films on titanium mesh for photocatalytic NOx removal and water cleaning. Catal Today 287:59–64. CrossRefGoogle Scholar
  40. Motola M, Satrapinskyy L, Caplovicova M, Roch T, Gregor M, Grancic B, Gregus J, Caplovic L, Plesch G (2018) Enhanced photocatalytic activity of hydrogenated and vanadium doped TiO2 nanotube arrays grown by anodization of sputtered Ti layers. Appl Surf Sci 434:1257–1265. CrossRefGoogle Scholar
  41. Olwal CO, Angienda PO, Onyango DM, Ochiel DO (2018) Susceptibility patterns and the role of extracellular DNA in Staphylococcus epidermidis biofilm resistance to physico-chemical stress exposure. BMC Microbiol 2:40–46. CrossRefGoogle Scholar
  42. Paramasivam I, Jha H, Liu N, Schmuki P (2012) A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. Small 8:3073–3103. CrossRefGoogle Scholar
  43. Park J, Bauer S, von der Mark K, Schmuki P (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7:1686–1691. CrossRefGoogle Scholar
  44. Park H, Park Y, Kim W, Choi W (2013) Surface modification of TiO2 photocatalyst for environmental applications. J Photochem Photobiol C 15:1–20. CrossRefGoogle Scholar
  45. Paulose M, Shankar K, Yoriya S, Prakasam HE, Varghese OK, Mor GK, LaTempa TJ, Fitzgerald A, Grimes CA (2008) Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length. J Phys Chem B 112:16179–16184. CrossRefGoogle Scholar
  46. Podporska-Carrol J, Panaitescu E, Quilty B, Wang L, Menon L, Pillai SC (2015) Antimicrobial properties of highly efficient photocatalytic TiO2 nanotubes. Appl Catal B-Environ 176:70–75. CrossRefGoogle Scholar
  47. Rastogi K, Sahu JN, Meikap BC, Biswas MN (2008) Removal of methylene blue from wastewater using fly ash as an adsorbent by hydrocyclone. J Hazard Mater 158:531–540. CrossRefGoogle Scholar
  48. Reddy PVL, Kavitha B, Reddy PAK, Kim KH (2017) TiO2-based photocatalytic disinfection of microbes in aqueous media: a review. Environ Res 154:296–303. CrossRefGoogle Scholar
  49. Roguska A, Pisarek M, Belcarz A, Marcon L, Holdynski M, Andrzejczuk M, Janik-Czachor M (2016) Improvement of the bio-functional properties of TiO2 nanotubes. Appl Surf Sci 388:775–785. CrossRefGoogle Scholar
  50. Rustomji SR, Frandsen CJ, Jin S, Tauber MJ (2010) Dye-sensitized solar cell constructed with titanium mesh and 3-D array of TiO2 nanotubes. J Phys Chem B 114:14537–14543. CrossRefGoogle Scholar
  51. Saginur R, Denis MS, Ferris W, Aaron SD, Chan F, Lee C, Ramotar K (2006) Multiple combination bactericidal testing of Staphylococcal biofilms from implant-associated infections. Antimicrob Agents Chemother 50:55–61. CrossRefGoogle Scholar
  52. Sakai M, Fujishima A, Watanabe T, Hashimoto K (2003) Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle. J Phys Chem B 107:1028–1035. CrossRefGoogle Scholar
  53. Simchi A, Tamjid E, Pishbin F, Boccaccini AR (2011) Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomed-Nanotechnol 7:22–39. CrossRefGoogle Scholar
  54. Sohm N, Immel F, Bauda P, Pagnout C (2015) Insight into the primary mode of action of TiO2 nanoparticles on Escherichia coli in the dark. Proteomics 15:98–113. CrossRefGoogle Scholar
  55. Sun RD, Nakajima A, Fujishima A, Watanabe T, Hashimoto K (2001) Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J Phys Chem B 105:1984–1990. CrossRefGoogle Scholar
  56. Tryk DA, Fujishima A, Honda K (2000) Recent topics in photoelectrochemistry: achievements and future prospects. Electrochim Acta 45:2363–2376. CrossRefGoogle Scholar
  57. Vereb G, Manczinger L, Bozso G, Sienkiewicz A, Forro L, Mogyorosi K, Hernadi K, Dombi A (2013) Comparison of the photocatalytic efficiencies of bare and doped rutile and anatase TiO2 photocatalysts under visible light for phenol degradation and E. coli inactivation. Appl Catal B-Environ 129:566–574. CrossRefGoogle Scholar
  58. Wang L, Zhang J, Wang A (2008) Removal of methylene blue from aqueous solution using chitosan-g-poly(acrylic acid)/montmorillonite superadsorbent nanocomposite. Colloid Surf 322:47–53. CrossRefGoogle Scholar
  59. Wang X, Zhou L, Lai W, Jiang T, Zhou J (2016) Bifunctional 4MBA mediated recyclable SERS-based immunoassay induced by photocatalytic activity of TiO2 nanotube arrays. Phys Chem Chem Phys 18:23795–23802. CrossRefGoogle Scholar
  60. Yang L, Zhang M, Shi S, Lv J, Song X, He G, Sun Z (2014) Effect of annealing temperature on wettability of TiO2 nanotube array films. Nanoscale Res Lett 9:621–628. CrossRefGoogle Scholar
  61. Zeng QY, Xi M, Xu W, Li XJ (2013) Preparation of titanium dioxide nanotube arrays on titanium mesh by anodization in (NH4)2SO4/NH4F electrolyte. Mater Corros 64:1001–1006. CrossRefGoogle Scholar
  62. Zhao C, Feng B, Li Y, Tan J, Lu X, Weng J (2013) Preparation and antibacterial activity of titanium nanotubes loaded with Ag nanoparticles in the dark and under the UV light. Appl Surf Sci 280:8–14. CrossRefGoogle Scholar
  63. Zlamal M, Macak JM, Schmuki P, Krysa J (2007) Electrochemically assisted photocatalysis on self-organized TiO2 nanotubes. Electrochem Commun 9:2822–2826. CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Inorganic ChemistryComenius University in Bratislava, Faculty of Natural SciencesBratislavaSlovakia
  2. 2.Department of MicrobiologyWroclaw Medical University, Faculty of MedicineWrocławPoland
  3. 3.Department of Experimental PhysicsComenius University in Bratislava, Faculty of Mathematics Physics and InformaticsBratislavaSlovakia
  4. 4.Wroclaw Research Centre EIT+WrocławPoland

Personalised recommendations