Skip to main content

Advertisement

Log in

Physicochemical properties of layered double hydroxides by-product obtained from Al–MgO mechanochemical process to produce hydrogen

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The characteristics of a by-product, both untreated (BP) and thermally treated (CBP), obtained from an Al-MgO mechanochemical process to produce hydrogen, is presented in this work. Commercial hydrotalcite (HTc), as well as its calcined form (CHTc), is included for comparison purposes. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FT-IR), pH of the point of zero charge (pHPZC), thermogravimetry analysis (TGA), BET analysis, and fractal dimension, to characterize the by-product were considered. The results showed that the by-product corresponded to Mg–Al-layered double hydroxide with structural characteristics similar to the hydrotalcite. The surface area and pore volume of the materials notably increased after the thermal treatment (CBP and CHTc), and this thermal process is accompanied by an increase in the surface fractal dimension Df. After contact with H2O or a (NH4)2CO3 aqueous solution, the original CBP and CHTc crystalline structure was regenerated by the memory effect, showing that BP has a similar structure to a hydrotalcite compound. The mechanism of the by-product formation is also proposed in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ay AN, Zümreoglu-Karan B, Mafra L (2009) A simple mechanochemical route to layered double hydroxides: synthesis of hydrotalcite-like Mg-Al-NO3-LDH by manual grinding in a mortar. Z Anorg Allg Chem 635:1470–1475

    Article  CAS  Google Scholar 

  • Basile F, Fornasari G, Gazzano M, Vaccari A (2000) Synthesis and characterization of hydrotalcite-type compounds containing noble metals. Appl Clay Sci 16:185–200

    Article  CAS  Google Scholar 

  • Bhatta LKG, Subramanyam S, Chengala MD, Olivera S, Venkatesh K (2015) Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: a review. J Clean Prod 103:171–196

    Article  CAS  Google Scholar 

  • Cavani F, Trifiro F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301

    Article  CAS  Google Scholar 

  • Chang X, Zhang X, Chen N, Wang K, Kang L, Lui ZH (2011) Oxidizing synthesis of Ni2+-Mn3+ layered double by hydroxide with good crystallinity. Mater Res Bull 46:1843–1847

    Article  CAS  Google Scholar 

  • Châtelet L, Bottero JY, Yvon J, Bouchelaghem A (1996) Competition between monovalent and divalent anions for calcined and uncalcined hydrotalcite: anion exchange and adsorption sites. Colloid Surf Physicochem Eng Asp 111:167–175

    Article  Google Scholar 

  • Comelli NA, Ruíz ML, Merino NA, Lick ID, Rodríguez-Castellón E, Jiménez-López A, Ponzi MI (2013) Preparation and Characterisation of calcined Mg/Al hydrotalcites impregnated with alkaline nitrate and their activities in the combustion of particulate matter. Appl Clay Sci 80–81:426–432

    Article  CAS  Google Scholar 

  • Conterosito E, Gianotti V, Palin L, Boccaleri E, Viterbo D, Milanesio M (2018) Facile preparation methods of hydrotalcite layered materials and their structural characterization by combined techniques. Inorg Chi Acta 470:36–50

    Article  CAS  Google Scholar 

  • Del Arco M, Gutiérrez S, Martín C, Rives V, Rocha J (2004) Synthesis and Characterization of layered double hydroxides (LDH) intercalated with non-steroidal ant-inflammatory drugs (NSAID). J Solid State Chem 177:3954–3962

    Article  CAS  Google Scholar 

  • Evans DG, Duan X (2006) Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine. Chem Commun 42:485–496

    Article  Google Scholar 

  • Fernández J, Ulibarri M, Labajos F, Rives V (1998) The effect of iron on the crystalline phases formed upon thermal decomposition of Mg-Al-Fe hydrotalcites. J Mater Chem 8:2507–2514

    Article  Google Scholar 

  • Fetter G, Fernandez F, Maubert AM, Lara VH, Bosch P (1997) Microwave irradiation effect on hydrotalcite synthesis. J Porous Mater 4:27–30

    Article  CAS  Google Scholar 

  • Gil A, Cherkashinin Y, Korili SA (2004) Fractal dimension of a pillared montmorillonite from nitrogen adsorption at 77 K. J Chem Eng Data 49:639–641

    Article  CAS  Google Scholar 

  • Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic Press, London

    Google Scholar 

  • Hermosín MC, Pavlovic I, Ulibarri MA, Cornejo J (1996) Hydrotalcite as sorbent for trinitrophenol: sorption capacity and mechanism. Wat Res 30:171–177

    Article  Google Scholar 

  • Ismail IMK, Pfeifer P (1994) Fractal analysis end surface roughness of nonporous carbon fibers and carbon blacks. Langmuir 10:1532–1538

    Article  CAS  Google Scholar 

  • Iwasaki T, Yoshii H, Nakamura H, Watano S (2012) Simple and rapid synthesis of Ni-Fe layered double-hydroxide by a new mechanochemical method. Appl Clay Sci 58:120–124

    Article  CAS  Google Scholar 

  • Kannan S, Dubey A, Knozinger H (2005) Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for hydroxylation of phenol. J Catal 23:381–392

    Article  CAS  Google Scholar 

  • Khan A, O’Hare D (2002) Intercalation chemistry of layered double hydroxides: recent developments and applications. J Mater Chem 12:3191–3198

    Article  CAS  Google Scholar 

  • Kloprogge JT, Kristóf J, Frost RL (2001) Thermogravimetric analysis-mass spectrometry (TGA-MS) of hydrotalcites containing CO3 2−, NO3 , Cl, SO4 2−, or ClO4 . Argentina. In: Proceeding of the 12th International Clay Conference Argentina July 22-28 12:451-458

  • Kozina A, Iturbe JL, Rivero IA (2013) Selective reduction with AlMgO particles used as an alternative water-reactive generator of hydrogen. Catal Lett 143:739–747

    Article  CAS  Google Scholar 

  • Labajos FM, Rives V, Ulibarri MA (1992) Effect of hydrothermal and thermal treatments on the physicochemical properties of Mg-Al hydrotalcite–like materials. J Mater Sci 27:1546–1552

    Article  CAS  Google Scholar 

  • López Muñoz BE, Rivera Robles R, Iturbe García JL, Olguín MT (2011) Adsorption of basic chromium sulfate used in the tannery industries by calcined hydrotalcite. J Mex Chem Soc 55:137–141

    Google Scholar 

  • Lopez T, Bosch P, Ramos E, Gómez R, Novaro O, Acosta D, Figueras F (1996) Synthesis and characterization of sol-gel hydrotalcites, structure and texture. Langmuir 12:189–192

    Article  CAS  Google Scholar 

  • Mandal S, Patil VS, Mayadevi S (2012) Alginate and hydrotalcite-like anionic clay composite systems: synthesis, characterization and application studies. Micropor Mesopor Mater 158:241–246

    Article  CAS  Google Scholar 

  • Mascolo G, Mascolo MC (2015) On the synthesis of layered double hydroxides (LDHs) by reconstruction method based on the “memory effect”. Micropor Mesopor Mater 214:246–248

    Article  CAS  Google Scholar 

  • Miyata S (1975) The synthesis of hydrotalcite-like compound and their structures an physic-chemical properties-I: the systems Mg2+-Al3+-NO3 , Mg2+-Al3+-Cl, Mg2+-Al3+-ClO4 , Ni2+-Al3+-Cl and Zn2+-Al3+-Cl. Clays Clay Miner 23:369–375

    Article  CAS  Google Scholar 

  • Miyata S (1983) Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Miner 31:305–311

    Article  CAS  Google Scholar 

  • Mohmel S, Kurzawski I, Uecker D, Mullar D, Gebner W (2002) The influence of a hydrothermal treatment using microwave heating on the crystallinity of layered double hydroxides. Cryst Res Technol 37:359–369

    Article  CAS  Google Scholar 

  • Oladoja NA, Aliu YD (2009) Snail Shell as coagulant aid in the alum precipitation of malachite green from aqua system. J Hazard Mater 164:1496–1502

    Article  CAS  PubMed  Google Scholar 

  • Pardini G (2003) Fractal scaling of surface roughness in artificially weathered smectite-rich soil regoliths. Geoderma 117:157–167

    Article  Google Scholar 

  • Pernyeszi T, Dékány I (2003) Surface fractal and structural properties of layered clay minerals monitored by small-angle X-ray scattering and low-temperature nitrogen adsorption experiments. Colloid Polym Sci 281:73–78

    Article  CAS  Google Scholar 

  • Pfeifer P, Cole MW (1990) Fractals in surface science: scattering and thermodynamics of adsorbed films. II. New J Chem 14:221–232

    CAS  Google Scholar 

  • Posadas ANS, Giménez D, Quiroz R, Protz R (2003) Multifractal characterization of soil pore systems. Soil Sci Soc Am J 67:1361–1369

    Article  CAS  Google Scholar 

  • Prinetto F, Ghiotti G, Graffin P, Tichit D (2000) Synthesis and characterization of sol-gel Mg/Al and Ni/Al layered double hydroxides and comparison with co-precipitated samples. Micropor Mesopor Mater 39:229–247

    Article  CAS  Google Scholar 

  • Qu J, Zhang Q, Li X, He X, Song S (2016) Mechanochemical approaches to synthesize layered double hydroxides: a review. Appl Clay Sci 119:185–192

    Article  CAS  Google Scholar 

  • Rožić L, Novaković T, Petrović S, Vuković Z, Čupić Z (2008) Fractal analysis of physical adsorption on surfaces of acid activated bentonites from Serbia. Chem Ind Chem Eng Q 14:227–229

    Article  Google Scholar 

  • Shiraga M, Kawabata T, Li D, Shishido T, Komaguchi K, Sano T, Takehira K (2006) Memory effect-enhanced catalytic ozonation of aqueous phenol and oxalic acid over supported Cu catalysts derived from hydrotalcite. Appl Clay Sci 33:247–259

    Article  CAS  Google Scholar 

  • Sing KSW (1982) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 54:2201–2218

    Article  Google Scholar 

  • Staszczuk P, Matyjewicz M, Kowalska E, Radomska J, Byszewski P, Kozlowski M (2003) Studies of surface properties and fractal dimensions of carbon nanotubes using complex methods. Rev Adv Mater Sci 5:471–476

    Google Scholar 

  • Takehira K, Kawabata T, Shishido T, Murakami K, Ohi T, Shoro D, Honda M, Takaki K (2005) Mechanism of reconstitution of hydrotalcite leading to eggshell-type Ni loading on Mg–Al mixed oxide. J Catal 231:92–104

    Article  CAS  Google Scholar 

  • Valente SJ, Figueras F, Gravelle M, Kumbhar P, Lopez J, Besse JP (2000) Basic properties of the mixed oxides obtained by thermal decomposition of hydrotalcite containing different metallic compositions. J Catal 189:370–381

    Article  CAS  Google Scholar 

  • Wang S, Dou T, Li Y, Zhang Y, Li X, Yan Z (2004) Synthesis, characterization and catalytic properties of stable mesoporous molecular sieve MCM-41 prepared from zeolite mordenite. J Solid State Chem 177:4800–4805

    Article  CAS  Google Scholar 

  • Xu ZP, Jin Y, Liu S, Hao ZP, Lu ZP (2008) Surface charging of layered double hydroxides during dynamic interactions of anions at the interfaces. J Colloid Interface Sci 326:522–529

    Article  CAS  PubMed  Google Scholar 

  • Xu S-M, Dan T, Dou Y-B, Yan H, Zhang ST, Ning F-Y, Shi W-Y, Wel M (2015) Theorical and experimental study on MIIMIII layered double hydroxides as efficient photocatalysts toward oxygen evolution from water. J Phys Chem C 119:18823–18834

    Article  CAS  Google Scholar 

  • Yangbo D, Shaocheng G, Jingyue L (2012) Experimental study of micropore size distribution in coals. Singapore. In: International conference on fluid dynamics and thermodynamics technologies (FDTT) IPCSIT 33:49-53

  • Yu H, Xu B, Bian L, Gao H (2010) Influence on structure of layered double hydroxides with different methods synthesis. Adv Mat Res 160–162:656–6601

    Google Scholar 

  • Zhu H, Tang P, Feng Y, Wang L, Li D (2012) Intercalation of IR absorber into layered double hydroxides: preparation, thermal stability and selective IR absorption. Mater Res Bull 47:532–536

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge ININ for their laboratory analysis facilities, and Elvia Morales Moreno, Iris Zoet López Malpica, and Marcelino Villa Tomasa for their technical support. M. T. Olguín and B.E. López-Muñoz thank the partial financial support from the Consejo Nacional de Ciencia y Tecnología (Project 254665).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Olguin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Muñoz, B.E., Iturbe-García, J.L. & Olguin, M. Physicochemical properties of layered double hydroxides by-product obtained from Al–MgO mechanochemical process to produce hydrogen. Chem. Pap. 73, 415–424 (2019). https://doi.org/10.1007/s11696-018-0602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-018-0602-8

Keywords

Navigation