Chemical Papers

, Volume 72, Issue 11, pp 2769–2783 | Cite as

Synthesis, evaluation and docking studies of some 4-thiazolone derivatives as effective lipoxygenase inhibitors

  • Sushant Kumar ShrivastavaEmail author
  • Brijesh K. Patel
  • Prabhash Nath Tripathi
  • Pavan Srivastava
  • Piyoosh Sharma
  • Avanish Tripathi
  • Ankit Seth
  • Manish Kumar Tripathi
Original Paper


Some promising 4-thiazolone derivatives as lipoxygenase inhibitors were designed, synthesized, characterized and evaluated for anti-inflammatory activity and respective ulcerogenic liabilities. Compounds (1b, 1e, 3b, and 3e) exhibited considerable in vivo anti-inflammatory activity (57.61, 79.35, 75.00, and 79.35%) against carrageenan-induced rat paw edema model, whereas compounds (1e, 3b, and 3e) were found active against the arachidonic acid-induced paw edema model (55.38, 55.38, and 58.46%). The most potent compound (3e) exhibited lesser ulcerogenic liability compared to the standard diclofenac and zileuton. Further, the promising compounds (1e and 3e) were evaluated for in vitro lipoxygenase (LOX; IC50 = 12.98 µM and IC50 = 12.67 µM) and cyclooxygenase (COX) inhibition assay (COX-1; IC50 > 50 µM and, COX-2; IC50 > 50 µM). The enzyme kinetics of compound 3e was evaluated against LOX enzyme and supported by in silico molecular docking and molecular dynamics simulations studies. Overall, the results substantiated that 5-benzylidene-2-phenyl-4-thiazolones are promising pharmacophore for anti-inflammatory activity.


4-Thiazolone One-pot multicomponent reaction Anti-inflammatory Lipoxygenase 



The authors gratefully acknowledge Indian Institute of Technology (BHU) for providing financial assistance through Institute Research Project (IRP) scheme and Design Innovation Center (DIC) scheme. Grant No. IIT (BHU)/R&D/IRP/2015-16/3471/L and Grant No. DIC-IIT(BHU)/L-11, respectively. The authors are also thankful to Department of Health Research, Ministry of Health and Family Welfare for providing the Young Scientist Project in newer areas of Drugs Chemistry (DHR/HRD/YS-15-2015-16).

Supplementary material

11696_2018_520_MOESM1_ESM.docx (3 mb)
Supplementary material 1 Spectral studies (FT-IR, 1H-NMR, and 13C-NMR) of some of the synthesized compounds along with the RMSD and RMSF graphs of molecular dynamics simulations can be found in the supplementary material. (DOCX 3096 kb)


  1. Ali AM, Saber GE, Mahfouz NM, El-Gendy MA, Radwan AA, Hamid MA (2007) Synthesis and three-dimensional qualitative structure selectivity relationship of 3, 5-disubstituted-2, 4-thiazolidinedione derivatives as COX2 inhibitors. Arch Pharm Res 30:1186–1204. CrossRefPubMedGoogle Scholar
  2. Allaj V, Guo C, Nie D (2013) Non-steroid anti-inflammatory drugs, prostaglandins, and cancer. Cell Biosci 3:8. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aparoy P, Kumar Reddy K, Reddanna P (2012) Structure and ligand based drug design strategies in the development of novel 5-LOX inhibitors. Curr Med Chem 19:3763–3778. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Banerjee AG, Das N, Shengule SA, Srivastava RS, Shrivastava SK (2015) Synthesis, characterization, evaluation and molecular dynamics studies of 5, 6–diphenyl–1, 2, 4–triazin–3 (2H)–one derivatives bearing 5–substituted 1, 3, 4–oxadiazole as potential anti–inflammatory and analgesic agents. Eur J Med Chem 101:81–95. CrossRefPubMedGoogle Scholar
  5. Banerjee AG, Das N, Shengule SA, Sharma PA, Srivastava RS, Shrivastava SK (2016) Design, synthesis, evaluation and molecular modelling studies of some novel 5, 6-diphenyl-1, 2, 4-triazin-3 (2H)-ones bearing five-member heterocyclic moieties as potential COX-2 inhibitors: A hybrid pharmacophore approach. Bioorg Chem 69:102–120. CrossRefPubMedGoogle Scholar
  6. Barreiro EJ, Fraga CA, Miranda AL, Rodrigues CR (2002) A química medicinal de N-acilidrazonas: Novos compostos-protótipos de fármacos analgésicos, antiinflamatórios e anti-trombóticos. Quim Nova 25:129–148. CrossRefGoogle Scholar
  7. Barzen S, Rödl CB, Lill A, Steinhilber D, Stark H, Hofmann B (2012) Synthesis and biological evaluation of a class of 5-benzylidene-2-phenyl-thiazolinones as potent 5-lipoxygenase inhibitors. Bioorg Med Chem 20:3575–3583. CrossRefPubMedGoogle Scholar
  8. Bekhit AA, Fahmy HT, Rostom SA, Bekhit AE-DA (2010) Synthesis and biological evaluation of some thiazolylpyrazole derivatives as dual anti-inflammatory antimicrobial agents. Eur J Med Chem 45:6027–6038. CrossRefPubMedGoogle Scholar
  9. Berger W, De Chandt M, Cairns C (2007) Zileuton: clinical implications of 5-lipoxygenase inhibition in severe airway disease. Int J Clin Pract 61:663–676. CrossRefPubMedGoogle Scholar
  10. Carter BZ, Wiseman AL, Orkiszewski R, Ballard KD, Ou C-N, Lieberman MW (1997) Metabolism of leukotriene C4 in γ-glutamyl transpeptidase-deficient mice. J Biol Chem 272:12305–12310. CrossRefPubMedGoogle Scholar
  11. Deep A, Jain S, Sharma PC (2010) Synthesis and anti-inflammatory activity of some novel biphenyl-4-carboxylic acid 5-(arylidene)-2-(aryl)-4-oxothiazolidin-3-yl amides. Acta Pol Pharm 67:63–67PubMedGoogle Scholar
  12. DiMartino M, Campbell G, Wolff C, Hanna N (1987) The pharmacology of arachidonic acid-induced rat paw edema. Inflamm Res 21:303–305. CrossRefGoogle Scholar
  13. Drazen JM, Israel E, O’byrne PM (1999) Treatment of asthma with drugs modifying the leukotriene pathway. N Engl J Med 340:197–206. CrossRefPubMedGoogle Scholar
  14. Franke L, Hofmann B, Schneider G, Steinhilber D (2009) Neue Inhibitoren der 5-lipoxygenase und deren Verwendungen New inhibitors of 5-lipoxygenase and their uses. In: Patent G (ed) German Patent. Johann Wolfgang Goethe-Universität Frankfurt am Main, GermanGoogle Scholar
  15. Gilbert NC, Bartlett SG, Waight MT, Neau DB, Boeglin WE, Brash AR, Newcomer ME (2011) The structure of human 5-lipoxygenase. Science 331:217–219. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hofmann B, Franke L, Proschak E, Tanrikulu Y, Schneider P, Steinhilber D, Schneider G (2008) Scaffold-hopping cascade yields potent inhibitors of 5-lipoxygenase. ChemMedChem 3:1535–1538. CrossRefPubMedGoogle Scholar
  17. Hofmann B, Barzen S, Rödl CB, Kiehl A, Borig J, Živković A, Stark H, Schneider G, Steinhilber D (2011) A class of 5-benzylidene-2-phenylthiazolinones with high potency as direct 5-lipoxygenase inhibitors. J Med Chem 54:1943–1947. CrossRefPubMedGoogle Scholar
  18. Hofmann B, Rödl C, Kahnt A, Maier T, Michel A, Hoffmann M, Rau O, Awwad K, Pellowska M, Wurglics M (2012) Molecular pharmacological profile of a novel thiazolinone-based direct and selective 5-lipoxygenase inhibitor. Br J Pharmacol 165:2304–2313CrossRefPubMedPubMedCentralGoogle Scholar
  19. Liang Z-Q, Yi L, Chen K-Q, Ye S (2016) N-heterocyclic carbene-catalyzed [3 + 4] annulation of enals and alkenyl thiazolones: enantioselective synthesis of thiazole-fused ε-lactones. J Org Chem 81:4841–4846. CrossRefPubMedGoogle Scholar
  20. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666. CrossRefGoogle Scholar
  21. Martel-Pelletier J, Lajeunesse D, Reboul P, Pelletier J (2003) Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Ann Rheum Dis 62:501–509. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Murphy RC, Gijón MA (2007) Biosynthesis and metabolism of leukotrienes. Biochem J 405:379–395. CrossRefPubMedGoogle Scholar
  23. Ottana R, Maccari R, Barreca ML, Bruno G, Rotondo A, Rossi A, Chiricosta G, Di Paola R, Sautebin L, Cuzzocrea S (2005) 5-Arylidene-2-imino-4-thiazolidinones: design and synthesis of novel anti-inflammatory agents. Bioorg Med Chem 13:4243–4252. CrossRefPubMedGoogle Scholar
  24. Pergola C, Werz O (2010) 5-Lipoxygenase inhibitors: a review of recent developments and patents. Expert Opin Ther Pat 20:355–375. CrossRefPubMedGoogle Scholar
  25. Pradelles P, Grassi J, Maclouf J (1985) Enzyme immunoassays of eicosanoids using acetylcholine esterase as label: an alternative to radioimmunoassay. Anal Chem 57:1170–1173. CrossRefPubMedGoogle Scholar
  26. Qiu J, Stevenson SH, O’Beirn MJ, Silverman RB (1999) 2, 6-difluorophenol as a bioisostere of a carboxylic acid: bioisosteric analogues of γ-aminobutyric acid. J Med Chem 42:329–332. CrossRefPubMedGoogle Scholar
  27. Reddy KK, Rajan VKV, Gupta A, Aparoy P, Reddanna P (2015) Exploration of binding site pattern in arachidonic acid metabolizing enzymes, cyclooxygenases and lipoxygenases. BMC Res Notes 8:152. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Rossi A, Pergola C, Koeberle A, Hoffmann M, Dehm F, Bramanti P, Cuzzocrea S, Werz O, Sautebin L (2010) The 5-lipoxygenase inhibitor, zileuton, suppresses prostaglandin biosynthesis by inhibition of arachidonic acid release in macrophages. Br J Pharmacol 161:555–570. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Sandmeyer T (1884) Ueber die Ersetzung der Amid-gruppe durch Chlor, Brom und Cyan in den aromatischen Substanzen. Eur J Inorg Chem 17:2650–2653. CrossRefGoogle Scholar
  30. Schneider G, Steinhilber D, Franke L, Hofmann B (2009) 5-arylalkylidene-2-arylalkyl-thiazol-4-one derivatives as inhibitors of 5-lipoxygenase and uses thereof. In: Patent W (ed) World Patent. Johann Wolfgang Goethe-Universität, Frankfurt Am MainGoogle Scholar
  31. Scholz M, Ulbrich HK, Soehnlein O, Lindbom L, Mattern A, Dannhardt G (2009) Diaryl-dithiolanes and-isothiazoles: COX-1/COX-2 and 5-LOX-inhibitory, OH scavenging and anti-adhesive activities. Bioorg Med Chem 17:558–568. CrossRefPubMedGoogle Scholar
  32. Shrivastava SK, Srivastava P, Bendresh R, Tripathi PN, Tripathi A (2017) Design, synthesis, and biological evaluation of some novel indolizine derivatives as dual cyclooxygenase and lipoxygenase inhibitor for anti-inflammatory activity. Bioorg Med Chem. CrossRefPubMedGoogle Scholar
  33. Srivastava P, Vyas VK, Variya B, Patel P, Qureshi G, Ghate M (2016) Synthesis, anti-inflammatory, analgesic, 5-lipoxygenase (5-LOX) inhibition activities, and molecular docking study of 7-substituted coumarin derivatives. Bioorg Chem 67:130–138. CrossRefPubMedGoogle Scholar
  34. Szelenyi I, Thiemer K (1978) Distention ulcer as a model for testing of drugs for ulcerogenic side effects. Arch Toxicol 41:99–105. CrossRefPubMedGoogle Scholar
  35. Tsurumi K, Kyuki K, Niwa M, Kokuba S, Fujimura H (1986) Pharmacological investigations of the new antiinflammatory agent 2-(10,11-dihydro-10-oxodibenzo[b,f]thiepin-2-yl)propionic acid. 1st communication: inhibitory effects of rat paw edema. Arzneimittelforschung 36:1796–1800PubMedGoogle Scholar
  36. Wenzel SE, Kamada AK (1996) Zileuton: the first 5-lipoxygenase inhibitor for the treatment of asthma. Ann Pharmacother 30:858–864. CrossRefPubMedGoogle Scholar
  37. Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med 111:544–547. CrossRefPubMedGoogle Scholar
  38. Zaitsu M, Hamasaki Y, Matsuo M, Ichimaru T, Fujita I, Ishii E (2003) Leukotriene synthesis is increased by transcriptional up-regulation of 5-lipoxygenase, leukotriene A4 hydrolase, and leukotriene C4 synthase in asthmatic children. J Asthma 40:147–154. CrossRefPubMedGoogle Scholar
  39. Zayed E, Elbannany A, Ghozlan S (1985) Studies on thiazolin-4-one: synthesis of some pyrano [2, 3-b]-thiazole derivatives. Pharmazie 40:194–196Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Sushant Kumar Shrivastava
    • 1
    Email author
  • Brijesh K. Patel
    • 1
  • Prabhash Nath Tripathi
    • 1
  • Pavan Srivastava
    • 1
  • Piyoosh Sharma
    • 1
  • Avanish Tripathi
    • 1
  • Ankit Seth
    • 1
  • Manish Kumar Tripathi
    • 1
  1. 1.Department of Pharmaceutical Engineering and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia

Personalised recommendations