Advertisement

Chemical Papers

, Volume 72, Issue 11, pp 2687–2697 | Cite as

Conductometric sensor with calixarene-based chemosensitive element for the arginine detection

  • O. O. SoldatkinEmail author
  • S. V. Marchenko
  • O. V. Soldatkina
  • S. O. Cherenok
  • O. I. Kalchenko
  • O. S. Prynova
  • O. M. Sylenko
  • V. I. Kalchenko
  • S. V. Dzyadevych
Original Paper
  • 273 Downloads

Abstract

A possibility of the creation of conductometric chemosensor with calixarene-based sensitive element for arginine detection was evaluated. The surface of gold interdigitated electrodes of conductometric transducer was modified with calixarene. The optimal concentration of calixarene for preparation of chemosensitive element was determined to be 100 mg/ml. The basic analytical characteristics of the developed chemosensor were determined (sensitivity to arginine—37.5 μS/mM, limit of arginine detection 5 μM, linear range 0.005–150 μM, response time 150 s) and analyzed as regards its application for arginine determination. It was established for all types of developed sensors that they have good reproducibility of signals to arginine over one working day; the measurement error (RSD) did not exceed 5%. The selectivity of calixarene-based chemosensor to arginine was investigated as well as the selectivity of calixarene complexation with arginine compared with other amino acids.

Keywords

Chemosensor Calixarene Arginine Conductometric transducer 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of this study by the STCU (Project 6177) and Scientific and Technical Government Program “Smart sensor devices of a new generation based on modern materials and technologies” of National Academy of Sciences of Ukraine.

Author contributions

VIK and SVD proposed an idea of the development of conductometric chemosensors based on calixarene 3 for arginine determination. SOC suggested a new procedure of calixarene 3 synthesis. OIK and OSP took part in the chromatographic study of calixarene 3 complexation with arginine and other amino acids. OMS performed experiments with 31 P and 1H NMR. SVM and OVS performed the main experiments to development conductometric chemosensor with calixarene-based chemosensitive element for arginine detection. OOS and SOC prepared and arranged the article. VIK, SVD, SOC, OOS and SVM took part in the discussion about the possibility of developed chemosensor used for partially selective detection of arginine or as the element of multisensor for amino acid analysis. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Asadpoor M, Ansarin M, Nemati M (2014) Amino acid profile as a feasible tool for determination of the authenticity of fruit juices. Adv Pharm Bull 4(4):359–362.  https://doi.org/10.5681/apb.2014.052 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Beulen MV, Huisman B-H, Heijden PA, Veggel FC, Simons MG, Biemond MEF, Lange PJ, Reinhoudt DN (1996) Evidence for nondestructive adsorption of dialkyl sulfides on gold. Langmuir 12:6170–6172CrossRefGoogle Scholar
  3. Casnati A, Sartori A, Pirondini L, Bonetti F, Pelizzi N, Sansone F, Ugozzoli F, Ungaro R (2006) Calix[4]arene anion receptors bearing 2,2,2-trifluoroethanol groups at the upper rim. Supramol Chem 18:199–218.  https://doi.org/10.1080/10610270500450499 CrossRefGoogle Scholar
  4. Fabiani A, Versari A, Parpinello GP, Castellari M, Galassi S (2002) High-performance liquid chromatographic analysis of free amino acids in fruit juices using derivatization with 9-fluorenylmethyl-chloroformate. J Chromatogr Sci 40(1):14–18.  https://doi.org/10.1093/chromsci/40.1.14 CrossRefPubMedGoogle Scholar
  5. Glazer ES, Stone EM, Zhu C, Massey KL, Hamir AN, Curley SA (2011) Bioengineered human arginase I with enhanced activity and stability controls hepatocellular and pancreatic carcinoma xenografts. Transl Oncol 4:138–146.  https://doi.org/10.1593/tlo.10265 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Gu M, Bai N, Xu B, Xu X, Jia Q, Zhang Z (2017) Protective effect of glutamine and arginine against soybean meal-induced enteritis in the juvenile turbot (Scophthalmus maximus). Fish Shellfish Immunol 70:95–105.  https://doi.org/10.1016/j.fsi.2017.08.048 CrossRefPubMedGoogle Scholar
  7. Gutsche CD (1998) Calixarenes revisited. In: Stoddart JF (ed) Monographs in supramolecular chemistry. Royal Society of Chemistry, CambridgeGoogle Scholar
  8. Hou E, Sun N, Zhang F, Zhao C, Usa K, Liang M, Tian Z (2017) Malate and aspartate increase l-arginine and nitric oxide and attenuate hypertension. Cell Rep 19(8):1631–1639.  https://doi.org/10.1016/j.celrep.2017.04.071 CrossRefPubMedGoogle Scholar
  9. Jaffrezic-Renault N, Dzyadevych SV (2008) Conductometric microbiosensors for environmental monitoring. Sensors 8(4):2569–2588.  https://doi.org/10.3390/s8042569 CrossRefPubMedGoogle Scholar
  10. Kalchenko OI, Lipkowski J, Nowakowski R, Kalchenko VI, Vysotsky MA, Markovsky LN (1998) Host- Guest complexation of phosphorus contained calixarenes with aromatic molecules in RP HPLC conditions. The stability constants determination. J Incl Phenom 23:377–380.  https://doi.org/10.1007/978-94-011-5288-4_63 CrossRefGoogle Scholar
  11. Kaplan I, Aydin Y, Bilen Y, Genc F, Keles MS, Eroglu A (2005) The evaluation of plasma arginine, arginase, and nitric oxide levels in patients with esophageal cancer. Turk J Med Sci 42:403–409.  https://doi.org/10.3906/sag-1104-50 CrossRefGoogle Scholar
  12. Lam TL, Wong GK, Chow HY, Chong HC, Chow TL, Kwok SY et al (2011) Recombinant human arginase inhibits the in vitro and in vivo proliferation of human melanoma by inducing cell cycle arrest and apoptosis. Pigment Cell Melanoma Res 24(2):366–376.  https://doi.org/10.1111/j.1755-148X.2010.00798.x CrossRefPubMedGoogle Scholar
  13. Lugovskoy EV, Gritsenko PG, Koshel TA, Cherenok SO, Kalchenko VI, Komisarenko SV (2011) Calix[4]arene methylenebisphosphonic acids as inhibitors of fibrin polymerization. FEBS J 278:1244–1251.  https://doi.org/10.1111/j.1742-4658.2011.08045.x CrossRefPubMedGoogle Scholar
  14. Neri P, Sessler JL, Wang MX (2016) Calixarenes and beyond. Springer, ChamCrossRefGoogle Scholar
  15. Peranzoni E, Marigo I, Dolcetti L, Ugel S, Sonda N, Taschin E et al (2008) Role of arginine metabolism in immunity and immunopathology. Immunobiology 212:795–812.  https://doi.org/10.1016/j.imbio.2007.09.008 CrossRefGoogle Scholar
  16. Saiapina OY, Dzyadevych SV, Jaffrezic-Renault N, Soldatkin OP (2012) Development and optimization of a novel conductometric bi-enzyme biosensor for l-arginine determination. Talanta 92(1):58–64.  https://doi.org/10.7124/bc.000134 CrossRefPubMedGoogle Scholar
  17. Saiapina OY, Kharchenko SG, Vishnevskii SG, Pyeshkova VM, Kalchenko VI, Dzyadevych SV (2016) Development of conductometric sensor based on 25,27-di-(5-thio-octyloxy)calix[4]arene-crown-6 for determination of ammonium. Nanoscale Res Lett 11(1):105.  https://doi.org/10.1186/s11671-016-1317-9 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Sharma K, Cragg PJ (2011) Calixarene based chemical sensors. Chem Sens 1:9Google Scholar
  19. Soldatkin OO, Peshkova VM, Saiapina OY, Kucherenko IS, Dudchenko OY, Melnik VG, Vasylenko OD, Semenycheva LM, Soldatkin AP, Dzyadevych SV (2013) Development of conductometric biosensor array for simultaneous determination of maltose, lactose, sucrose and glucose. Talanta 115:200–207.  https://doi.org/10.1016/j.talanta.2013.04.065 CrossRefPubMedGoogle Scholar
  20. Sosovska O, Korpan Y, Vocanson F, Jaffrezic-Renault N (2009) Conductometric chemosensors based on calixarenes for determination of amines and amino acids. Sens Lett 7(5):989–994.  https://doi.org/10.1166/sl.2009.1186 CrossRefGoogle Scholar
  21. Tapiero H, Mathé G, Couvreur P, Tew KDI (2002) Arginine. Biomed Pharmacother 56(9):439–445CrossRefPubMedGoogle Scholar
  22. Vissers YL, Dejong CH, Luiking YC, Fearon KC, von Meyenfeldt MF, Deutz NE (2005) Plasma arginine concentrations are reduced in cancer patients: evidence for arginine deficiency? Am J Clin Nutr 81(5):1142–1146.  https://doi.org/10.1093/ajcn/81.5.1142 CrossRefPubMedGoogle Scholar
  23. Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J. 336:1–17.  https://doi.org/10.1042/bj3360001 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Xu W, Ghosh S, Comhair SA, Asosingh K, Janocha AJ, Mavrakis DA et al (2016) Increased mitochondrial arginine metabolism supports bioenergetics in asthma. J Clin Investig 126(7):2465–2481.  https://doi.org/10.1172/JCI82925 CrossRefPubMedGoogle Scholar
  25. Xu YQ, Guo YW, Shi BL, Yan SM, Guo XY (2018) Dietary arginine supplementation enhances the growth performance and immune status of broiler chickens. Livest Sci. 209:8–13.  https://doi.org/10.1007/978-94-011-5288-4_63 CrossRefGoogle Scholar
  26. Zimmerli B, Schlatter J (1991) Ethyl carbamate: analytical methodology, occurrence, formation, biological activity and risk assessment. Mutat Res 259:325–350.  https://doi.org/10.1016/0165-1218(91)90126-7 CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  • O. O. Soldatkin
    • 1
    • 2
    Email author
  • S. V. Marchenko
    • 1
  • O. V. Soldatkina
    • 2
  • S. O. Cherenok
    • 3
  • O. I. Kalchenko
    • 3
  • O. S. Prynova
    • 3
  • O. M. Sylenko
    • 3
  • V. I. Kalchenko
    • 3
  • S. V. Dzyadevych
    • 1
    • 2
  1. 1.Institute of Molecular Biology and GeneticsNational Academy of Sciences of UkraineKievUkraine
  2. 2.Taras Shevchenko National University of KyivKievUkraine
  3. 3.Institute of Organic ChemistryNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations