Advertisement

Chemical Papers

, Volume 72, Issue 11, pp 2849–2857 | Cite as

Synthesis of vanadium oxides nanosheets as anode material for asymmetric supercapacitor

  • Zhi-Qiang HouEmail author
  • Zhi-Guang Yang
  • Yong-Ping GaoEmail author
Original Paper

Abstract

Vanadium oxides (V2O5) have been intensely investigated for advanced supercapacitors due to its extensive multifunctional properties of typical layered structure and multiple stable oxide states of vanadium in its oxides. In this study, V2O5 nanosheets are synthesized via V2O5 xerogel solvothermal reaction in ethanol solvent at 200 °C for 12 h. The V2O5 nanosheets facilitate the easy accessibility of ions and can provide more area available for electrochemical reactions. We have achieved the highest specific capacitance of 298 F/g and good rate discharge for V2O5 electrodes. Notably, the capacitance still retains a high retention rate of 85% after 10,000 cycles at 200 mV/s. Furthermore, asymmetric supercapacitors is assembled based on V2O5 nanosheets and active carbon electrode, and a specific capacitance of 13.2 F/g is obtained at 1 A/g, with a energy density of 4.7 Wh/kg at a power density of 0.798 kW/kg and remains 2.28 Wh/kg at 7.992 kW/kg. Based on these results, the asymmetric supercapacitor exhibits a good cycle life with 77.3% capacitance retention after 3000 cycles. It suggests that the V2O5 nanosheets are promising electrode material for electrochemical supercapacitors.

Keywords

V2O5 xerogel V2O5 nanosheets Specific capacitance Supercapacitor 

Notes

Acknowledgements

The authors wish to acknowledge the financial support provided by the High Level Personal Fund of Zhoukou Normal University (ZKNUC2017043), School-based Program of Zhoukou Normal University (ZKNUB 1201804), Key Scientific Research Project of Henan Province (18B150024), Key Project of Xinyang College (2017zd03), Xinyang College Students’ Innovative Entrepreneurial Training Program (CX20170031).

Supplementary material

11696_2018_504_MOESM1_ESM.doc (446 kb)
Supplementary material 1 (DOC 446 kb)

References

  1. Chang J, Jin MH, Yao F, Kim TH, Le VT, Yue HY, Gunes F, Li B, Ghosh A, Xie SS, Lee YH (2013) Asymmetric supercapacitors based on graphene/MnO2 nanospheres and graphene/MoO3 nanosheets with high energy density. Adv Funct Mater 23:5074–5083.  https://doi.org/10.1002/adfm201301851 CrossRefGoogle Scholar
  2. Chen Z, Augustyn V, Wen J, Zhang YW, Shen MQ, Dunn B, Lu YF (2011) High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv Mater 23:791–795.  https://doi.org/10.1002/adma.201003658 CrossRefPubMedGoogle Scholar
  3. Fan HS, Zhao N, Wang H, Xu J, Pan F (2014) 3D conductive network-based free-standing PANI–RGO–MWNTs hybrid film for high-performance flexible supercapacitor. J Mater Chem A 2:12340–12347.  https://doi.org/10.1039/C4TA02118E CrossRefGoogle Scholar
  4. Gao YP, Huang KJ (2017) NiCo2S4 materials for supercapacitor applications. Chem Asian J 12:1969–1984.  https://doi.org/10.1002/asia.201700461 CrossRefPubMedGoogle Scholar
  5. Gao Z, Yang WL, Wang J, Yan HJ, Yao Y, Ma J, Wang B, Zhang ML, Liu LH (2013) Electrochemical synthesis of layer-by-layer reduced graphene oxide sheets/polyaniline nanofibers composite and its electrochemical performance. Electrochim Acta 91:185–194.  https://doi.org/10.1016/j.electacta.2012.12.119 CrossRefGoogle Scholar
  6. Gao YP, Wu X, Huang KJ, Xing LL, Zhang YY, Liu L (2017a) Two-dimensional transition metal diseleniums for energy storage application: a review of recent developments. CrystEngComm 19:404–418.  https://doi.org/10.1039/c6ce02223e CrossRefGoogle Scholar
  7. Gao YP, Huang KJ, Shuai HL, Liu L (2017b) Synthesis of sphere-feature molybdenum selenide with enhanced electrochemical performance for supercapacitor. Mater Lett 209:319–322.  https://doi.org/10.1016/j.matlet.2017.08.044 CrossRefGoogle Scholar
  8. Gao YP, Bao ZZ, Huang KJ, Zhang YY (2017c) Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors. New J Chem 41:11456–11470.  https://doi.org/10.1039/C7NJ02580G CrossRefGoogle Scholar
  9. Gao YP, Huang KJ, Zhang CX, Song SS, Wu X (2018a) High-performance symmetric supercapacitor based on flower-like zinc molybdate. J Alloy Compd 731:1151–1158.  https://doi.org/10.1016/j.jallcom.2017.10.161 CrossRefGoogle Scholar
  10. Gao YP, Huang KJ, Wu Xu, Hou ZQ, Liu YY (2018b) MoS2 nanosheets assembling three-dimensional nanospheres for enhanced-performance supercapacitor. J Alloy Compd 741:174–181.  https://doi.org/10.1016/j.jallcom.2018.01.110 CrossRefGoogle Scholar
  11. Hou ZQ, Guo K, Li HQ, Zhai TY (2016) Facile synthesis and electrochemical properties of nanoflake VN for supercapacitors. CrystEngComm 18:3040–3047.  https://doi.org/10.1039/C6CE00333H CrossRefGoogle Scholar
  12. Ji H, Liu X, Liu Z, Yan B, Chen L, Xie Y, Liu C, Hou W, Yang G (2015) In situ preparation of sandwich MoO3/C hybrid nanostructures for high-rate and ultralong-life supercapacitors. Adv Funct Mater 25:1886–1894.  https://doi.org/10.1002/adfm.201404378 CrossRefGoogle Scholar
  13. Jiang LL, Sheng LZ, Long CL, Fan ZJ (2015) Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy 11:471–480.  https://doi.org/10.1016/j.nanoen.2014.11.007 CrossRefGoogle Scholar
  14. Jin ZY, Lu AH, Xu YY, Zhang JT, Li WC (2014) Ionic liquid-assisted synthesis of microporous carbon nanosheets for use in high rate and long cycle life supercapacitors. Adv Mater 26:3700–3705.  https://doi.org/10.1002/adma.201306273 CrossRefPubMedGoogle Scholar
  15. Jo C, Hwang J, Song H, Dao AH, Kim YT, Lee SH, Hong SW, Yoon S, Lee J (2013) Block-copolymer-assisted one-pot synthesis of ordered mesoporous WO3-X/carbon nanocomposites as high-rate-performance electrodes for pseudocapacitors. Adv Funct Mater 23:3747–3754.  https://doi.org/10.1002/adfm.201202682 CrossRefGoogle Scholar
  16. Kang JJ, Hirata A, Kang LJ, Zhang XM, Hou Y, Chen LY, Li C, Fujita T, Akagi K, Chen MW (2013) Enhanced supercapacitor performance of MnO2 by atomic doping. Angew Chem Int Ed 125:1708–1711.  https://doi.org/10.1002/ange.201208993 CrossRefGoogle Scholar
  17. Kim SI, Lee JS, Ahn HJ, Song HK, Jang JH (2013) Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl Mater Interfaces 5:1596–1603.  https://doi.org/10.1021/am3021894 CrossRefPubMedGoogle Scholar
  18. Kim J, Lee J, You J, Park MS, Hossain MSA, Yamauchi Y, Kim JH (2016) Conductive polymers for next-generation energy storage systems: recent progress and new functions. Mater Horizons 3:517–535.  https://doi.org/10.1039/C6MH00165C CrossRefGoogle Scholar
  19. Kim J, Kim JH, Ariga K (2017) Redox-active polymers for energy storage nanoarchitectonics. Joule 1:739–768.  https://doi.org/10.1016/j.joule.2017.08.018 CrossRefGoogle Scholar
  20. Lao ZJ, Konstantinov K, Tournaire Y, Ng SH, Wang GX, Liu HK (2006) Synthesis of vanadium pentoxide powders with enhanced surface-area for electrochemical capacitors. J Power Sources 162:1451–1454.  https://doi.org/10.1016/j.jpowsour.2006.07.060 CrossRefGoogle Scholar
  21. Lee HY, Goodenough JB (1999) Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KCl) aqueous solution. J Solid State Chem 148:81–84.  https://doi.org/10.1006/jssc.1999.8367 CrossRefGoogle Scholar
  22. Lee M, Balasingam SK, Jeong HY, Hong WG, Lee HBR, Kim BH, Jun Y (2014) One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage. Sci Rep 5:8151.  https://doi.org/10.1038/srep08151 CrossRefGoogle Scholar
  23. Li L, Raji ARO, Fei HL, Yang Y, Samuel ELG, Tour JM (2013) Nanocomposite of polyaniline nanorods grown on graphene nanoribbons for highly capacitive pseudocapacitors. ACS Appl Mater Interfaces 5:6622–6627.  https://doi.org/10.1021/am4013165 CrossRefPubMedGoogle Scholar
  24. Li LL, Peng SJ, Wu HB, Yu L, Madhavi S, Lou XW (2015) A flexible quasi-solid-state asymmetric electrochemical capacitor based on hierarchical porous V2O5 nanosheets on carbon nanofibers. Adv Energy Mater 5:1500753.  https://doi.org/10.1002/aenm.201500753 CrossRefGoogle Scholar
  25. Liu J, Xia H, Xue D, Lu L (2009) Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries. J Am Chem Soc 131:12086–12087.  https://doi.org/10.1021/ja9053256 CrossRefPubMedGoogle Scholar
  26. Liu MX, Qian JS, Zhao YH, Zhu DZ, Gan LH, Chen LW (2015) Core-shell ultramicroporous@microporous carbon nanospheres as advanced supercapacitor electrodes. J Mater Chem A 3:11517–11526.  https://doi.org/10.1039/C5TA02224J CrossRefGoogle Scholar
  27. Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y (2010) Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett 10:4750–4755.  https://doi.org/10.1021/nl103343w CrossRefPubMedGoogle Scholar
  28. Maruyama H, Nakano H, Nakamoto M, Sekiguchi A (2014) High-power electrochemical energy storage system employing stable radical pseudocapacitors. Angew Chem Int Ed 126:1348–1352.  https://doi.org/10.1002/anie.201308302 CrossRefGoogle Scholar
  29. Pai R, Kalra V (2018) High performance aqueous asymmetric supercapacitor based on iron oxide anode and cobalt oxide cathode. J Mater Res.  https://doi.org/10.1557/jmr.2018.13 CrossRefGoogle Scholar
  30. Pai R, Singh A, Simotwo S, Kalra V (2018) In situ grown iron oxides on carbon nanofibers as freestanding anodes in aqueous supercapacitors. Adv Eng Mater.  https://doi.org/10.1002/adem.201701116 CrossRefGoogle Scholar
  31. Pan X, Zhao Y, Ren GF, Fan ZY (2013) Highly conductive VO2 treated with hydrogen for supercapacitors. Chem Commun 49:3943–3945.  https://doi.org/10.1039/C3CC00044C CrossRefGoogle Scholar
  32. Pandit B, Karade SS, Sankapal BR (2017a) Hexagonal VS2 anchored MWCNTs: first approach to design flexible solid-state symmetric supercapacitor device. ACS Appl Mater Interfaces 9:44880–44891.  https://doi.org/10.1021/acsami.7b13908 CrossRefPubMedGoogle Scholar
  33. Pandit B, Dubal DP, Romero PG, Kale BB, Sankapal BR (2017b) V2O5 encapsulated MWCNTs in 2D surface architecture: complete solid-state bendable highly stabilized energy efficient supercapacitor device. Sci Rep 7:43440.  https://doi.org/10.1038/srep43430 CrossRefGoogle Scholar
  34. Qu QT, Zhu YS, Gao XW, Wu YP (2012) Core-shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Adv Energy Mater 2:950–955.  https://doi.org/10.1002/aenm.201200088 CrossRefGoogle Scholar
  35. Reddy RN, Reddy RG (2006) Porous structured vanadium oxide electrode material for electrochemical capacitors. J Power Sources 156:700–704.  https://doi.org/10.1016/j.jpowsour.2005.05.071 CrossRefGoogle Scholar
  36. Salunkhe RR, Hsu SH, Wu KCW, Yamauchi Y (2014a) Large-scale synthesis of reduced graphene oxides with uniformly coated polyaniline for supercapacitor applications. ChemSusChem 7:1551–1556.  https://doi.org/10.1002/cssc.201400147 CrossRefPubMedGoogle Scholar
  37. Salunkhe RR, Lee YH, Chang KH, Li JM, Simon P, Tang J, Torad NL, Hu CC, Yamauchi Y (2014b) Nanoarchictured graphene-based supercapacitors for next-generation energy-storage applications. Chem A Eur J 20:13838–13852.  https://doi.org/10.1002/chem.201403649 CrossRefGoogle Scholar
  38. Salunkhe RR, Tang J, Kobayashi N, Kim J, Ide Y, Tominaka S, Kim JH, Yamauchi Y (2016a) Ultrahigh performance supercapacitors utilizing core-shell nanoarchitectures from a metal-organic framework-derived nanoporous carbon and a conducting polymer. Chem Sci 7:5704–5713.  https://doi.org/10.1039/C6SC01429A CrossRefPubMedPubMedCentralGoogle Scholar
  39. Salunkhe RR, Young C, Tang J, Takei T, Ide Y, Kobayashi N, Yamauchi Y (2016b) A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem Commun 52:4764–4767.  https://doi.org/10.1039/C6CC00413J CrossRefGoogle Scholar
  40. Saravanakumar B, Purushothaman KK, Muralidharan G (2012) Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Appl Mater Interfaces 4:4484–4490.  https://doi.org/10.1021/am301162p CrossRefPubMedGoogle Scholar
  41. Sathiya M, Prakash AS, Ramesha K, Tarascon JM, Shukla AK (2011) V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage. J Am Chem Soc 133:16291–16299.  https://doi.org/10.1021/ja207285b CrossRefPubMedGoogle Scholar
  42. Shi MJ, Kou SZ, Shen BS, Lang JW, Yang Z, Yan XB (2014) Improving the performance of all-solid-state supercapacitors by modifying ionic liquid gel electrolytes with graphene nanosheets prepared by arc-discharge. Chin Chem Lett 25:859–864.  https://doi.org/10.1016/j.cclet.2014.04.010 CrossRefGoogle Scholar
  43. Shinde NM, Jagadale AD, Kumbhar VS, Rana TR, Kim J, Lokhande CD (2015) Wet chemical synthesis of WO3 thin films for supercapacitor application. Korean J Chem Eng 32:974–979.  https://doi.org/10.1007/s11814-014-0323-9 CrossRefGoogle Scholar
  44. Simotwo SK, Delre C, Kalra V (2016) Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline-carbon nanotube nanofibers. ACS Appl Mater Interfaces 8:21261–21269.  https://doi.org/10.1021/acsami.6b03463 CrossRefPubMedGoogle Scholar
  45. Singh A, Chandra A (2013) Graphite oxide/polypyrrole composite electrodes for achieving high energy density supercapacitors. J Appl Electrochem 43:773–782.  https://doi.org/10.1007/s10800-013-0573-y CrossRefGoogle Scholar
  46. Singh A, Chandra A (2015) Significant performance enhancement in asymmetric supercapacitors based on metal oxides, carbon nanotubes and neutral aqueous electrolyte. Sci Rep 5:15551.  https://doi.org/10.1038/srep15551 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Singh A, Salmi Z, Joshi N, Jha P, Decorse P, Lecoq H, Truong SL, Jouini M, Aswal DK, Chehimi MM (2013) Electrochemical investigation of free-standing polypyrrole–silver nanocomposite films: a substrate free electrode material for supercapacitors. RSC Adv 3:24567–24575.  https://doi.org/10.1039/C3RA42786B CrossRefGoogle Scholar
  48. Tang J, Yamauchi Y (2016) Carbon materials: MOF morphologies in control. Nature Chemistry 8:638–639.  https://doi.org/10.1038/nchem.2548 CrossRefPubMedGoogle Scholar
  49. Wang Y, Cao G (2008) Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv Mater 20:2251–2269.  https://doi.org/10.1002/adma.200702242 CrossRefGoogle Scholar
  50. Wang WY, Takahashi K, Lee K, Cao G (2006) Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv Mater 16:1133–1144.  https://doi.org/10.1002/adfm.200500662 CrossRefGoogle Scholar
  51. Wang QH, Jiao LF, Du HM, Wang YJ, Yuan HT (2014) Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J Power Sources 245:101–106.  https://doi.org/10.1016/j.jpowsour.2013.06.035 CrossRefGoogle Scholar
  52. Wee G, Soh HZ, Cheah YL, Mhaisalkar SG, Srinivasan M (2010) Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. J Mater Chem 20:6720–6725.  https://doi.org/10.1039/C0JM00059K CrossRefGoogle Scholar
  53. Xia XH, Tu JP, Mai YJ, Wang XL, Gu CD, Zhao XB (2011) Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J Mater Chem 21:9319–9325.  https://doi.org/10.1039/C1JM10946D CrossRefGoogle Scholar
  54. Xia XH, Tu JP, Mai YJ, Wang XL, Gu CD, Zhao XB (2012) Freestanding Co3O4 nanowire array for high performance supercapacitors. RSC Adv 2:1835–1841.  https://doi.org/10.1039/C1RA00771H CrossRefGoogle Scholar
  55. Yu ZN, Duong B, Abbitt D, Thomas J (2013) Highly ordered MnO2 nanopillars for enhanced supercapacitor performance. Adv Mater 25:3302–3306.  https://doi.org/10.1002/adma.201300572 CrossRefPubMedGoogle Scholar
  56. Zhang CS, Zhao F, Zhang JJ, Wang XY, Bao GL (1999) Infrared spectroscopic studies of alumina on a nanometer scale. Acta Chim Sin 57:275–280Google Scholar
  57. Zhang XJ, Shi WH, Zhu JX, Zhao WY, Ma J, Mhaisalkar S, Maria TL, Yang YH, Zhang H, Hng HH, Yan QY (2010) Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res 3:643–652.  https://doi.org/10.1007/s12274-010-0024-6 CrossRefGoogle Scholar
  58. Zhang JT, Chen P, Oh BHL, Chan MBP (2013) High capacitive performance of flexible and binder-free graphene-polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly. Nanoscale 5:9860–9866.  https://doi.org/10.1039/C3NR02381H CrossRefPubMedGoogle Scholar
  59. Zheng JP, Jow TR (1995) A new charge storage mechanism for electrochemical capacitors. J Electrochem Soc 142:L6–L8.  https://doi.org/10.1149/1.2043984 CrossRefGoogle Scholar
  60. Zheng JP, Cygan PJ, Jow TR (1995) Hydrous ruthenium oxides as an electrode material for electrochemical capacitors. J Electrochem Soc 142:2699–2703.  https://doi.org/10.1149/1.2050077 CrossRefGoogle Scholar
  61. Zhu LH, Gao QM, Tan YL, Tian WQ, Xu JD, Yang K, Yang CX (2015) Nitrogen and oxygen co-doped microporous carbons derived from the leaves of Euonymus japonicas as high performance supercapacitor electrode material. Microporous Mesoporous Mater 210:1–9.  https://doi.org/10.1016/j.micromeso.2015.02.014 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringZhou Kou Normal UniversityHenanChina
  2. 2.College of Science and Technology, Xinyang CollegeXinyangChina

Personalised recommendations