Chemical Papers

, Volume 72, Issue 9, pp 2339–2346 | Cite as

Pilot unit of carbon dioxide methanation using nickel-based catalysts

  • Veronika Šnajdrová
  • Tomáš Hlinčík
  • Karel Ciahotný
  • Lukáš Polák
Original Paper


The catalytic hydrogenation of carbon dioxide is known for over 100 years. In recent years, the importance of this reaction has significantly increased due to synthetic natural gas production (SNG). Synthetic natural gas is produced from renewable energy sources (such as wind, hydro or solar power). Excess electric energy can be used for the production of hydrogen via electrolysis. This work focuses on the synthesis and characterization of a laboratory prepared nickel-based catalyst. This catalytic activity is compared to that of a commercial nickel-based catalyst. This manuscript also describes the methanation pilot unit where the catalytic tests took place. Energy is supplied to the pilot unit from a small photovoltaic power plant. Catalytic tests were performed at different pressures and temperatures.


Carbon dioxide Hydrogen Methanation Nickel Catalyst 



The presented work was financially supported by TACR-Epsilon Project TH02020767 and IGA VSCHT Project A2_FTOP_2017_027.


  1. Aksoylu AE, Isli A, Zi Onsan (1999) Interaction between nickel and molybdenum in Ni–Mo/Al2O3 catalysts: effect of impregnation strategy. Appl Catal A Gen 183:357–364. CrossRefGoogle Scholar
  2. Ananikov VP (2015) Nickel: the “Spirited Horse” of transition metal catalysis. ACS Catal 5:1964–1971. CrossRefGoogle Scholar
  3. Atkins P, Julio P (2006) Atkin’s physical chemistry, 8th edn. Freeman WH and Company, Oxford, pp 210–211Google Scholar
  4. Aziz MAA, Jalil AA, Triwagyono S, Mukti RR, Taufiq-Yap YH, Sazegar MR (2014) Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Appl Catal B Environ 147:359–368. CrossRefGoogle Scholar
  5. Aziz MAA, Jalil AA, Triwagyono S, Ahmed A (2015) CO2 methanation over heterogeneous catalyst recent progress and future prospect. Green Chem 17:2647–2663. CrossRefGoogle Scholar
  6. Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A Gen 212:17–60. CrossRefGoogle Scholar
  7. Brooks KP, Hu L, Zhu H, Kee RJ (2007) Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors. Chem Eng Sci 62:1161–1170. CrossRefGoogle Scholar
  8. Buerkhardt M, Busch G (2013) Methanation of hydrogen and carbon dioxide. Appl Energy 111:74–79. CrossRefGoogle Scholar
  9. Chen M, Guo Z, Zheng J, Jing F, Chu W (2016) CO2 selective hydrogenation to synthetic natural gas (SNG) over four nano-sized Ni/ZrO2 samples: ZrO2 crystalline phase and treatment impact. J Energy Chem 25:1070–1077. CrossRefGoogle Scholar
  10. Civan F (2004) Natural gas transportation and storage. Elsevier, Amsterdam, pp 273–282Google Scholar
  11. Darensbourg DJ, Holtcamp MW, Struck GE, Zimmer MS, Niezgoda SA, Rainey P, Robertson JB, Draper JD, Reibenspies JH (1998) Catalytic activity of a series of Zn (II) phenoxides for the copolymerization of epoxides and carbon dioxide. J Am Chem Soc 121:107–116. CrossRefGoogle Scholar
  12. Dry ME (2002) The Fischer–Tropsch process: 1950–2000. Catal Today 71:227–241. CrossRefGoogle Scholar
  13. Falconer JL, Zağli AE (1980) Adsorption and methanation of carbon dioxide on a nickel/silica catalyst. J Catal 62:280–285. CrossRefGoogle Scholar
  14. Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F (2012) A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv 2:2358–2368. CrossRefGoogle Scholar
  15. Gao J, Liu Q, Gu F, Liu B, Zhong Z, Su F (2015) Recent advances in methanation catalysts for the production of synthetic natural gas. RSC Adv 5:22759–22776. CrossRefGoogle Scholar
  16. Garbarino G, Riani P, Magistri L, Busca G (2014) A study of the methanation of carbon dioxide on Ni/Al2O3 catalysts at atmospheric pressure. Int J Hydrog Energy 39:11557–11565. CrossRefGoogle Scholar
  17. Graça I, Gonzáles LV, Bacariza MC, Frenandes A, Henriques C, Lopes JM, Riberio MF (2014) CO2 hydrogenation into CH4 on NiHNaUSY zeolites. Appl Catal B Environ 147:101–110. CrossRefGoogle Scholar
  18. Green Car Congress (2013) Audi opens power-to-gas facility in Werlte/Emsland; e-gas from water, green electricity and CO2. Retrieved October 3, 2016 from
  19. Hou PY, Wise H (1985) Kinetic studies with a sulphur-tolerant methanation catalyst. J Catal 93:409–416. CrossRefGoogle Scholar
  20. International Energy Agency (2014) World Energy Outlook 2014. Executive summary. Retrieved October 2, 2016 from
  21. Jasquemin M, Beuls A, Ruiz P (2010) Catalytic production of methane from CO2 and H2 at low temperature: insight on the reaction mechanism. Appl Catal 157:462–466. Google Scholar
  22. Lin C, Wang H, Li Z, Wang B, Ma X, Qin S, Sun Q (2012) Effect of a promotore on the methanation activity of Mo-based sulphur-resistant catalyst. Front Chem Sci Eng 7:88–94. CrossRefGoogle Scholar
  23. Mills GA, Steffgen FW (1974) Catalytic methanation. Catal Rev 8:159–210. CrossRefGoogle Scholar
  24. Moore CL (2010) Technology development for human exploration of Mars. Acta Astronaut 67:1170–1175. CrossRefGoogle Scholar
  25. Ross JRH (2012) Heterogenous catalysis: fundamentals and applications. Elsevier, Amsterdam, pp 65–96CrossRefGoogle Scholar
  26. Sabatier P, Senderens JB (1902) New synthesis of methane. Compt Rend 134:514–516Google Scholar
  27. Saheldelfar S, Takht RM (2015) Carbon dioxide utilization for methane production: a thermodynamic analysis. J Pet Sci Eng 134:14–22. CrossRefGoogle Scholar
  28. Sato S, Arai T, Morikawa T, Uemura K, Suzuki TM, Tanaka H, Kajino T (2011) Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts. J Am Chem Soc 133:15240–15243. CrossRefGoogle Scholar
  29. Schaaf T, Grüning J, Schuster MR, Rothenfluh T, Orth A (2014) Methanation of CO2-storage of renewable energy in a gas distribution system. Energy Sustain Soc 4:1–14. Google Scholar
  30. Schlesinger MD, Demeter JJ, Greyson M (1956) Catalyst for producing methane from hydrogen and carbon monoxide. Ind Eng Chem Res 48:68–70. CrossRefGoogle Scholar
  31. Sing KSW (1997) Physical adsorption: experimental, theory and applications. Kluwer Academic Publishers, Dordrecht, pp 9–16CrossRefGoogle Scholar
  32. Šnajdrová V, Hlinčík T, Baraj E (2016) Power-to-gas. Gas 2:35–40Google Scholar
  33. Šnajdrová V, Hlinčík T, Jílková L, Vrbová V, Ciahotný K (2017) Syntéza katalyzátorů pro methanizační reakci. Paliva 4:99–104Google Scholar
  34. Solymosi F, Erdöhelyi A, Kocis M (1981) Methanation of CO2 on supported Ru catalysts. J Chem Soc 77:1003–1012. Google Scholar
  35. Sterner M (2009) Bioenergy and renewable power methane in integrated 100% renewable energy systems: limiting global warming by transforming energy systems. Kassel University Press, KasselGoogle Scholar
  36. Tada S, Schimizu T, Kameyama H, Haneda T, Kikuchi R (2012) Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. Int J Hydrog Energy 37:5527–5531. CrossRefGoogle Scholar
  37. Trueba M, Trassati SP (2005) γ-Alumina as a support for catalysts: a review of fundamental aspects. Eur J Inorg Chem 17:3393–3403. CrossRefGoogle Scholar
  38. Tsuji M, Kodama T, Yoshida T, Kitayama Y, Tamaura Y (1996) Preparation and CO2 methanation activity of an ultrafine Ni (II) ferrite catalyst. J Catal 164:315–321. CrossRefGoogle Scholar
  39. Vance CK, Bartholomew CH (1983) Hydrogenation of carbon dioxide on group viii metals: effects of support on activity/selectivity and adsorption properties of nickel. Appl Catal 7:169–177. CrossRefGoogle Scholar
  40. Vannice MA (1976) The catalytic synthesis of hydrocarbons from carbon monoxide and hydrogen. Catal Rev 14:153–191. CrossRefGoogle Scholar
  41. Wang W, Gang J (2011) Methanation of carbon dioxide: an overview. Front Chem Sci Eng 5:2–10. CrossRefGoogle Scholar
  42. Wang BW, Yao YQ, Liu SH, Hu ZY, Li ZH, Ma XB (2015) Effects of MoO3 loading and calcination temperature on the catalytic performance of MoO3/CeO2 toward sulfur-resistant methanation. Fuel Sci Technol 138:263–270. CrossRefGoogle Scholar
  43. Wang W, Chu W, Wang N, Yang W, Jiang CH (2016) Mesoporous nickel catalyst supported on multi-walled carbon nanotubes for carbon dioxide methanation. Int J Hydrog Energy 41:967–975. CrossRefGoogle Scholar
  44. Wentrcek PR, Wood BJ, Wise H (1976) The role of surface carbon in catalytic methanation. J Catal 43:363–366. CrossRefGoogle Scholar
  45. Yamaguchi T (1994) Application of ZrO2 as a catalyst and a catalyst support. Catal Today 20:199–214. CrossRefGoogle Scholar
  46. Yu KMK, Curcic I, Gabriel J, Tsang SCE (2008) Recent advances in CO2 capture and utilization. Chem Sus Chem 1:893–899. CrossRefGoogle Scholar
  47. Zheng J, Wang Ch, Chu W, Zhou Y, Köhler K (2016) CO2 methanation over supported Ru/Al2O3 catalysts: mechanistic studies by in situ infrared spectroscopy. ChemistrySelect 1:3197–3203. CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Veronika Šnajdrová
    • 1
  • Tomáš Hlinčík
    • 1
  • Karel Ciahotný
    • 1
  • Lukáš Polák
    • 2
  1. 1.Department of Gaseous and Solid Fuels and Air ProtectionUniversity of Chemistry and Technology PraguePragueCzech Republic
  2. 2.Department of Hydrogen TechnologiesÚJV Řež, a.s.Husinec-ŘežCzech Republic

Personalised recommendations