Chemical Papers

, Volume 73, Issue 5, pp 1237–1246 | Cite as

The effect of carbonization temperature of waste cigarette butts on Na-storage capacity of N-doped hard carbon anode

  • Hongying HouEmail author
  • Chengyi Yu
  • Xianxi LiuEmail author
  • Yuan Yao
  • Zhipeng Dai
  • Dongdong Li
Original Paper


It has always been a widespread concern that countless waste cigarette butts cause resource waste and environmental pollution, so it is necessary to explore their recovery and reutilization. For this purpose, waste cigarette butts were recycled via pyrolysis carbonization at 700 °C and 800 °C for sodium ion battery (SIB) anode, respectively. The results suggested that the micro-structure and electrochemical Na-storage performances of N-doped waste cigarette butts hard carbon (NWHC) were affected by the carbonization temperature. For example, NWHC carbonized at 700 °C (NWHC-700) possessed lower degree of graphitization, higher content of N element and larger interlayer spacing than NWHC at 800 °C (NWHC-800). And also, NWHC-700 anode delivered the reversible discharge capacities of 300 mAh g−1 at 25 mA g−1 for 200 cycles and 135 mAh g−1 even at 1500 mA g−1 for 2000 cycles, higher than 241 mAh g−1 and 105 mAh g−1 of NWHC-800 anode, respectively. More disordered micro-structure, lower degree of graphitization, larger interlayer spacing and higher content of N element of NWHC-700 anode may be jointly responsible for higher electrochemical Na-storage performances, which would delay the afflux of the waste cigarette butts into the waste streams.


Waste cigarette butts N-doped hard carbon Sodium ion battery Anode 



This work was financially supported by the National Natural Science Foundations of China (Grant Nos. 51566006 and 51363011), the 46th Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry in China (6488-20130039), the 19th Young Academic and Technical Leaders of Yunnan Province (1097-10978240), the Program of High-level Introduced Talent of Yunnan Province (10978125) and the Project of Key Discipline (14078232 and 14078311).


  1. Blankenship T, Mokaya R (2017) Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity. Energy Environ Sci 10(12):2552–2562. CrossRefGoogle Scholar
  2. Cao Y, Xiao L, Sushko M, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf L, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12(7):3783–3787. CrossRefPubMedGoogle Scholar
  3. Ciric-Marjanovic G, Pasti I, Gavrilov N, Janosevic A, Mentus S (2013) Carbonised polyaniline and polypyrrole: towards advanced; nitrogen-containing carbon materials. Chem Pap 67(8):781–813. CrossRefGoogle Scholar
  4. Dai D, Li B, Tang H, Chang K, Jiang K, Chang Z, Yuan X (2016) Simultaneously improved capacity and initial Coulombic efficiency of Li-rich cathode Li[Li0.2Mn0.54Co0.13Ni0.13]O2 by enlarging crystal cell from a nanoplate precursor. J Power Sources 307(1):665–672. CrossRefGoogle Scholar
  5. Deng X, Wei Z, Cui C, Liu Q, Wang C, Ma J (2018) Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage. J Mater Chem A 6(9):4013–4022. CrossRefGoogle Scholar
  6. El-Hendawy A (2006) Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions. J Anal Appl Pyrolysis 75(2):159–166. CrossRefGoogle Scholar
  7. Gaddam R, Niaei A, Hankel M, Searles D, Kumar N, Zhao X (2017) Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon. J Mater Chem A 5(42):22186–22192. CrossRefGoogle Scholar
  8. Han S, Jung D, Jeong J, Oh E (2014) Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes. Chem Eng J 254(7):597–604. CrossRefGoogle Scholar
  9. Harris P (2013) Fullerene-like models for microporous carbon. J Mater Sci 48(2):565–577. CrossRefGoogle Scholar
  10. Hasegawa G, Kanamori K, Kannari N, Ozaki J, Nakanishi K, Abe T (2016) Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes. J Power Sources 318(1):41–48. CrossRefGoogle Scholar
  11. Hou H, Dai Z, Liu X, Yao Y, Liao Q, Yu C, Li D (2018) Reutilization of the expired tetracycline for lithium ion battery anode. Sci Total Environ 630(1):495–501. CrossRefPubMedGoogle Scholar
  12. Islami F, Torre L, Jemal A (2015) Global trends of lung cancer mortality and smoking prevalence. Transl Lung Cancer Res 4(4):327–338. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Jarvis M (2004) Why people smoke. Br Med J 328(7434):277–279. CrossRefGoogle Scholar
  14. Kumar N, Baek J (2015) Doped graphene supercapacitors. Nanotechnology 26(49):492001. CrossRefPubMedGoogle Scholar
  15. Kumar N, Gaddam R, Varanasi S, Yang D, Bhatia S, Zhao X (2016) Sodium ion storage in reduced graphene oxide. Electrochim Acta 214:319–325. CrossRefGoogle Scholar
  16. Lee M, Kim G, Song H, Park S, Yi J (2014) Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode. Nanotechnology 25(34):345601. CrossRefPubMedGoogle Scholar
  17. Li B, Li Y, Dai D, Chang K, Tang H, Chang Z, Wang C, Yuan X, Wang H (2015) Facile and nonradiation pretreated membrane as a high conductive separator for Li-ion batteries. ACS Appl Mater Inter 7(36):20184–20189. CrossRefGoogle Scholar
  18. Li W, Huang J, Feng L, Cao L, Ren Y, Li R, Xu Z, Li J, Yao C (2017a) Controlled synthesis of macroscopic three-dimensional hollow reticulate hard carbon as long-life anode materials for Na-ion batteries. J Alloys Compd 716(1):210–219. CrossRefGoogle Scholar
  19. Li Z, Jian Z, Wang X, Rodrıguez-Perez I, Bommier C, Ji X (2017b) Hard carbon anodes of sodium-ion batteries: undervalued rate capability. Chem Commun 53(17):2610–2613. CrossRefGoogle Scholar
  20. Liao Q, Hou H, Duan J, Liu S, Yao Y, Dai Z, Yu C, Li D (2017) Composite sodium p-toluenesulfonate/polypyrrole/TiO2 nanotubes/Ti anode for sodium ion battery. Int J Hydrog Energy 42(17):12414–12419. CrossRefGoogle Scholar
  21. Liu P, Li Y, Hu Y, Li H, Chen L, Huang X (2016) A waste biomass derived hard carbon as high-performance anode material for sodium-ion batteries. J Mater Chem A 4(34):13046–13052. CrossRefGoogle Scholar
  22. Lotfabad E, Ding J, Cui K, Kohandehghan A, Kalisvaart W, Hazelton M, Mitlin D (2015) High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8(7):7115–7129. CrossRefGoogle Scholar
  23. Orinakova R, Fedorkova A, Orinak A (2013) Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries. Chem Pap 67(8):860–875. CrossRefGoogle Scholar
  24. Ou J, Yang L, Zhang Z, Xi X (2017) Nitrogen-doped porous carbon derived from horn as an advanced anode material for sodium ion batteries. Microporous Mesoporous Mater 237(1):23–30. CrossRefGoogle Scholar
  25. Qin D, Chen S (2017) A sustainable synthesis of biomass carbon sheets as excellent performance sodium ion batteries anode. J Solid State Electr 21(5):1305–1312. CrossRefGoogle Scholar
  26. Selvamani V, Ravikumar R, Suryanarayanan V, Velayutham D, Gopukumar S (2016) Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell. Electrochim Acta 190(1):337–345. CrossRefGoogle Scholar
  27. Shin J, Lee C, Lee K, Eun K (2001) Effect of residual stress on the Raman-spectrum analysis of tetrahedral amorphous carbon films. Appl Phys Lett 78(5):631–633. CrossRefGoogle Scholar
  28. Slaughter E, Gersberg R, Watanabe K, Rudolph J, Stransky C, Novotny T (2011) Toxicity of cigarette butts, and their chemical components, to marine and freshwater fish. Tob Control 20(Suppl 1):i25–i29. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Smith E, Novotny T (2011) Whose butt is it? tobacco industry research about smokers and cigarette butt waste. Tob Control 20(Suppl 1):i2–i9. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Stejskal J, Sapurina I, Trchová M, Sedenkova I, Kovarova J, Kopecka J, Prokes J (2015) Coaxial conducting polymer nanotubes: polypyrrole nanotubes coated with polyaniline or poly(-phenylenediamine) and products of their carbonisation. Chem Pap 69(10):1341–1349. CrossRefGoogle Scholar
  31. Tomšík E, Morávková Z, Stejskal J, Trchová M, Šálek P, Kovářová J, Zemek J, Cieslar M, Prokeš J (2013) Multi-wall carbon nanotubes with nitrogen-containing carbon coating. Chem Pap 67(8):1054–1065. CrossRefGoogle Scholar
  32. Wang J, Li X, Du X, Wang J, Ma H, Jing X (2017a) Polypyrrole composites with carbon materials for supercapacitors. Chem Pap 71(2):293–316. CrossRefGoogle Scholar
  33. Wang P, Zhu X, Wang Q, Xu X, Zhou X, Bao J (2017b) Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries. J Mater Chem A 5(12):5761–5769. CrossRefGoogle Scholar
  34. Wei Y, Hu Q, Cao Y, Fang D, Xu W, Jiang M, Huang J, Liu H, Fan X (2017) Polypyrrole nanotube arrays on carbonized cotton textile for aqueous sodium battery. Org Electron 46(1):211–217. CrossRefGoogle Scholar
  35. Wiggins-Camacho J, Stevenson K (2015) Effect of nitrogen concentration on capacitance, density of states, electronic conductivity, and morphology of N-doped carbon nanotube electrodes. J Phys Chem C 113(44):19082–19090. CrossRefGoogle Scholar
  36. Yang S, Feng X, Zhi L, Cao Q, Maier J, Mullen K (2010) Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv Mater 22(7):838–842. CrossRefPubMedGoogle Scholar
  37. Yang T, Qian T, Wang M, Shen X, Xu N, Sun Z, Yan C (2016a) A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv Mater 28(3):539–545. CrossRefPubMedGoogle Scholar
  38. Yang Y, Qiu M, Liu L, Su D, Pi Y, Yan G (2016b) Nitrogen-doped hollow carbon nanospheres derived from dopamine as high-performance anode materials for sodium-ion batteries. Nano 11(11):1–9. CrossRefGoogle Scholar
  39. Yu F, Wang M, Huang B, Peng Q, Huang Y (2017) Acid-treatment effect on the N-doped porous carbon obtained from fish scales for Cr(VI) removal. Chem Pap 71(10):2261–2269. CrossRefGoogle Scholar
  40. Yu C, Hou H, Liu X, Yao Y, Liao Q, Dai Z, Li D (2018) Old-loofah-derived hard carbon for long cyclicity anode in sodium ion battery. Int J Hydrog Energy 43(6):3253–3260. CrossRefGoogle Scholar
  41. Zhang H, Deng Q, Zhou A, Liu X, Li J (2014) Porous Li2C8H4O4 coated with N-doped carbon by using CVD as an anode material for Li-ion batteries. J Mater Chem A 2(16):5696–5702. CrossRefGoogle Scholar
  42. Zhang J, Zhang G, Qi M, Hu H, Ma X (2018) Co-production of hydrogen-rich gas and porous carbon by partial gasification of coal char. Chem Pap 72(2):273–287. CrossRefGoogle Scholar
  43. Zhao G, Zou G, Qiu X, Li S, Guo T, Hou H, Ji X (2017a) Rose-like N-doped porous carbon for advanced sodium storage. Electrochim Acta 240(1):24–30. CrossRefGoogle Scholar
  44. Zhao P, Yu B, Sun S, Guo Y, Chang Z, Li Q, Wang C (2017b) High-performance anode of sodium ion battery from polyacrylonitrile/humic acid composite electrospun carbon fibers. Electrochim Acta 232(1):348–356. CrossRefGoogle Scholar
  45. Zheng F, Yang Y, Chen Q (2014) High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun 5(5):5261–5270. CrossRefPubMedGoogle Scholar
  46. Zheng Y, Wang Y, Lu Y, Hu Y, Li J (2017) A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode. Nano Energy 39(1):489–498. CrossRefGoogle Scholar
  47. Zhu J, Chen C, Lu Y, Ge Y, Jiang H, Fu K, Zhang X (2015) Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 94(1):189–195. CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2019

Authors and Affiliations

  1. 1.Faculty of Material Science and EngineeringKunming University of Science and TechnologyKunmingChina
  2. 2.Faculty of Mechanical and Electronic EngineeringKunming University of Science and TechnologyKunmingChina

Personalised recommendations