Advertisement

Chemical Papers

, Volume 72, Issue 5, pp 1151–1157 | Cite as

Continuous dialysis of hydrochloric acid and lithium chloride: permeability of anion-exchange membrane to chloride ions

  • Helena Bendová
  • Zdeněk Palatý
Original Paper

Abstract

A counter-current two-compartment dialyzer equipped with an anion-exchange membrane Neosepta-AFN was used to study dialysis of a hydrochloric acid and lithium chloride mixture. To quantify this process, several characteristics were calculated from the data obtained at steady state. First, the dialysis process was characterized by the acid recovery yield and rejection coefficient of salt, which were in the range of 61–98% and 62–94%, respectively (for HCl and LiCl concentrations from 0.1 to 1.0 kmol m−3 and volumetric liquid flow rates from 8 × 10−9 to 24 × 10−9 m3 s−1). Furthermore, this study proved that dialysis of an HCl + LiCl mixture can be quantified by a single characteristic, i.e., the permeability coefficient of the membrane to chloride ions, which is a function of the concentration of both the components in the feed.

Keywords

Diffusion dialysis Hydrochloric acid Lithium chloride Anion-exchange membrane Continuous dialyzer Mass transfer 

Symbols

A

Membrane area m2

C

Constant in Eq. (7)

c

Molar concentration kmol m−3

D

Diffusivity m2 s−1

d

Width of compartment m

de

Equivalent diameter m

F

Objective function kmol2 m−6

J

Molar flux kmol m−2 s−1

kL

Liquid mass transfer coefficient m s−1

P

Permeability coefficient of membrane m s−1

R

Rejection coefficient %

Re

Reynolds number

Sc

Schmidt number

Sh

Sherwood number

\(\dot{V}\)

Volumetric liquid flow rate m3 s−1

z

Length coordinate m

zT

Height of compartment m

v

Recovery %

Superscripts

calc

Calculated value

exp

Experimental value

I

Referred to compartment I

II

Referred to compartment II

Subscripts

A

Referred to component A (HCl)

B

Referred to component B (LiCl)

Cl

Referred to Cl ions

i

Referred to solution/membrane interface

in

Inlet

M

Referred to membrane

out

Outlet

Notes

Acknowledgements

The authors wish to thank the Faculty of Chemical Technology, University of Pardubice for the institutional support.

References

  1. Bendová H, Palatý Z (2011) Modeling of continuous diffusion dialysis of aqueous solutions of sulphuric acid and nickel sulphate. Membr Water Treat 2(4):267–279CrossRefGoogle Scholar
  2. Bendová H, Šnejdrla P, Palatý Z (2010) Continuous dialysis of selected salts of sulphuric acid. Membr Water Treat 1(3):171–179.  https://doi.org/10.12989/mwt.2010.1.3.171 CrossRefGoogle Scholar
  3. Coulson JM, Richardson JF (2000) Coulson & Richardson chemical engineering, vol 1, 6th edn. Butterwoth-Heinemann, OxfordGoogle Scholar
  4. Luo JY, Wu CM, Wu YH, Xu TW (2010) Diffusion dialysis of hydrochloride acid at different temperatures using PPO-SiO2 hybrid anion-exchange membranes. J Membr Sci 347:240–249.  https://doi.org/10.1016/j.memsci.2009.10.029 CrossRefGoogle Scholar
  5. Luo JY, Wu CM, Wu YH, Xu TW (2011) Diffusion dialysis process of inorganic acids and their salts: the permeability of different acidic anions. Sep Purif Technol 78:97–102.  https://doi.org/10.1016/j.seppur.2011.01.028 CrossRefGoogle Scholar
  6. Luo JY, Wu CM, Wu YH, Xu TW (2013) Diffusion dialysis of hydrochloric acid with their salts: effect of co-existence metal ions. Sep Purif Technol 118:716–722.  https://doi.org/10.1016/j.seppur.2013.08.014 CrossRefGoogle Scholar
  7. Mao FL, Zhang GC, Tong JJ, Xu TW, Wu YH (2014) Anion exchange membranes used in diffusion dialysis for acid recovery from erosive and organic solutions. Sep Purif Technol 122:376–383.  https://doi.org/10.1016/j.seppur.2013.11.031 CrossRefGoogle Scholar
  8. Palatý Z, Bendová H (2009) Separation of HCl + FeCl2 mixture by anion-exchange membrane. Sep Purif Technol 66(1):45–50.  https://doi.org/10.1016/j.seppur.2008.11.026 CrossRefGoogle Scholar
  9. Palatý Z, Bendová H (2011) Continuous dialysis of sulphuric acid in the presence of zinc sulphate. Chem Pap 65:400–406.  https://doi.org/10.2478/s11696-011-0007-4 CrossRefGoogle Scholar
  10. Palatý Z, Bendová H (2016) Continuous dialysis of sulphuric acid and sodium sulphate mixture. J Membr Sci 497:36–46.  https://doi.org/10.1016/j.memsci.2015.07.017 CrossRefGoogle Scholar
  11. Palatý Z, Bendová H (2017) Continuous dialysis of hydrochloric acid and sodium chloride mixture. Sep Sci Technol 52(16):2611–2621.  https://doi.org/10.1080/01496395.2017.1363230 CrossRefGoogle Scholar
  12. Palatý Z, Žáková A (2006) Competitive transport of hydrochloric acid and zinc chloride through polymeric anion-exchange membrane. J Appl Polym Sci 101:1391–1397.  https://doi.org/10.1002/app.22748 CrossRefGoogle Scholar
  13. Palatý Z, Žáková A (2007) Separation of HCl + NiCl2 mixture by diffusion dialysis. Sep Sci Technol 42(9):1965–1983.  https://doi.org/10.1080/15363830701313362 CrossRefGoogle Scholar
  14. Palatý Z, Žáková A, Prchal P (2007) Continuous dialysis of carboxylic acids. Permeability of Neosepta-AME membrane. Desalination 216:345–355.  https://doi.org/10.1016/j.desal.2006.09.029 CrossRefGoogle Scholar
  15. Pan JF, He YB, Wu L, Jiang CX, Wu B, Mondal AN, Cheng CL, Xu TW (2015) Anion-exchange membranes from hot-pressed electrospun QPPO-SiO2 hybrid nanofibers for acid recovery. J Membr Sci 480:115–121.  https://doi.org/10.1016/j.memsci.2015.01.040 CrossRefGoogle Scholar
  16. Wang C, Wu CM, Wu YH, Xu TW (2013) Polyelectrolyte complex/PVA membranes for diffusion dialysis. J Hazard Mater 261:114–122.  https://doi.org/10.1016/j.jhazmat.2013.07.018 CrossRefGoogle Scholar
  17. Xu J, Lu SG, Fu D (2009) Recovery of hydrochloric acid from the waste acid solution by diffusion dialysis. J Hazard Mater 165(1–3):832–837.  https://doi.org/10.1016/j.jhazmat.2008.10.064 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Faculty of Chemical Technology, Institute of Environmental and Chemical EngineeringUniversity of PardubicePardubiceCzech Republic

Personalised recommendations