Skip to main content
Log in

Optimization of process parameters for bio-oil synthesis from pine needles (Pinus roxburghii) using response surface methodology

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Pine needles are the residue of pine (Pinus roxburghii) forest and a major cause of forest fire in the North Western hills of India. Experiments were conducted to convert pine needles into bio-oil and biochar through pyrolysis as an alternate way to use pine needles to reduce forest fire. Process parameters such as pyrolysis temperature, gas flow rate, vapor cooling temperature, heating rate were optimized by employing central composite design (CCD) in Response Surface Methodology (RSM). The maximum bio-oil yield was found at pyrolysis temperature of 547 °C, CO2 gas flow rate of 1.85 l min−1, vapor cooling temperature of 15 °C and heating rate of 50 °C min−1. Chemical characterization of bio-oil was conducted using Fourier Transform Infrared (FTIR) spectroscopy and gas chromatographic/mass spectroscopy (GC/MS). Fuel properties of bio-oil and biochar were determined using ASTM standard methods. The bio-oil recovered was found to be comparable with conventional liquid fuels in many aspects. The by-product, biochar, was found suitable as soil amendment as well as solid fuel with higher energy density than the pine needles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad M, Lee SS, Rajapaksha AU, Vithanage M, Zhang M, Cho JS, Lee SE, Ok YS (2013) Trichloroethylene adsorption by pine needle biochars produced at various pyrolysis temperatures. Bioresour Technol 143:615–622. doi:10.1016/j.biortech.2013.06.033

    Article  CAS  Google Scholar 

  • Beis SH, Onay Ö, Koçkar ÖM (2002) Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions. Renew Energy 26(1):21–32. doi:10.1016/S0960-1481(01)00109-4

    Article  CAS  Google Scholar 

  • Boateng AA, Hicks KB, Vogel KP (2006) Pyrolysis of switchgrass (Panicum virgatum) harvested at several stages of maturity. J Anal Appl Pyrol 75(2):55–64. doi:10.1016/j.jaap.2005.03.005

    Article  CAS  Google Scholar 

  • Bordoloi N, Narzari R, Chutia RS, Bhaskar T, Kataki R (2015) Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions. Bioresour Technol 178:83–89. doi:10.1016/j.biortech.2014.10.079

    Article  CAS  Google Scholar 

  • Chang S, Zhao Z, Zheng A, Li X, Wang X, Huang Z, He F, Li H (2013) Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor. Bioresour Technol 138:321–328. doi:10.1016/j.biortech.2013.03.170

    Article  CAS  Google Scholar 

  • Chutia RS, Kataki R, Bhaskar T (2013) Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake. Bioresour Technol 139:66–72. doi:10.1016/j.biortech.2013.03.191

    Article  CAS  Google Scholar 

  • Coates J (2000) Interpretation of infrared spectra, a practical approach. Encycl Anal Chem. doi:10.1002/9780470027318

    Google Scholar 

  • Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18(2):590–598. doi:10.1021/ef034067u

    Article  CAS  Google Scholar 

  • Dwivedi RK, Singh RP, Bhattacharya TK (2016) Studies on bio-pretreatment of pine needles for sustainable energy thereby preventing wild forest fires. Curr Sci 111(2):388

    Article  Google Scholar 

  • Fateh T, Richard F, Batiot B, Rogaume T, Luche J, Zaida J (2016) Characterization of the burning behavior and gaseous emissions of pine needles in a cone calorimeter–FTIR apparatus. Fire Saf J 82:91–100. doi:10.1016/j.firesaf.2016.03.008

    Article  CAS  Google Scholar 

  • Font R, Conesa JA, Moltó J, Muñoz M (2009) Kinetics of pyrolysis and combustion of pine needles and cones. J Anal Appl Pyrol 85(1):276–286. doi:10.1016/j.jaap.2008.11.015

    Article  CAS  Google Scholar 

  • Haykiri-Acma H, Yaman S (2007) Interpretation of biomass gasification yields regarding temperature intervals under nitrogen–steam atmosphere. Fuel Process Technol 88(4):417–425. doi:10.1016/j.fuproc.2006.11.002

    Article  CAS  Google Scholar 

  • Isa KM, Daud S, Hamidin N, Ismail K, Saad SA, Kasim FH (2011) Thermogravimetric analysis and the optimisation of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM). Ind Crops Prod 33(2):481–487. doi:10.1016/j.indcrop.2010.10.024

    Article  CAS  Google Scholar 

  • Jiang X, Ellis N (2010) Upgrading Bio-oil through emulsification with biodiesel: mixture production. Energy Fuels 24:1358–1364. doi:10.1021/ef9010669

    Article  CAS  Google Scholar 

  • Kim JS (2015) Production, separation and applications of phenolic-rich bio-oil—a review. Bioresour Technol 178:90–98. doi:10.1016/j.biortech.2014.08.121

    Article  CAS  Google Scholar 

  • Lee JG, Lee CG, Kwag JJ, Buglass AJ, Lee GH (2005) Determination of optimum conditions for the analysis of volatile components in pine needles by double-shot pyrolysis–gas chromatography–mass spectrometry. J Chromatogr A 1:227–234. doi:10.1016/j.chroma.2005.06.060

    Article  CAS  Google Scholar 

  • Lee MK, Tsai WT, Tsai YL, Lin SH (2010) Pyrolysis of napier grass in an induction-heating reactor. J Anal Appl Pyrolysis 88(2):110–116. doi:10.1016/j.jaap.2010.03.003

    Article  CAS  Google Scholar 

  • Lee J, Yang X, Song H, Ok YS, Kwon EE (2017) Effects of carbon dioxide on pyrolysis of peat. Energy 120:929–936. doi:10.1016/j.energy.2016.11.143

    Article  CAS  Google Scholar 

  • Leoni E, Cancellieri D, Balbi N, Tomi P, Bernardini AF, Kaloustian J, Marcelli T (2003) Thermal degradation of pinus pinaster needles by dsc, part 2: kinetics of exothermic phenomena. J Fire Sci 21(2):117–130. doi:10.1177/0734904103021002002

    Article  CAS  Google Scholar 

  • Lin L, Yan R, Liu Y, Jiang W (2010) In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: cellulose, hemicellulose and lignin. Bioresour Technol 101(21):8217–8223. doi:10.1016/j.biortech.2010.05.084

    Article  CAS  Google Scholar 

  • Mandal S, Ramkrushna GI, Verma BC, Das A (2013) Biochar: an innovative soil ameliorant for climate change mitigation in NE India. Curr Sci 105(5):568–569

    Google Scholar 

  • Mandal S, Verma BC, Ramkrushna GI, Singh RK, Rajkhowa DJ (2015) Characterization of biochar obtained from weeds and its effect on soil properties of North Eastern Region of India. J Environ Biol 36(2):499–505

    CAS  Google Scholar 

  • Mazaheri H, Lee KT, Bhatia S, Mohamed AR (2010) Subcritical water liquefaction of oil palm fruit press fiber in the presence of sodium hydroxide: an optimisation study using response surface methodology. Bioresour Technol 101(23):9335–9341. doi:10.1016/j.biortech.2010.07.004

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3):848–889. doi:10.1021/ef0502397

    Article  CAS  Google Scholar 

  • Montgomery D (2005) Design and analysis of experiments, 6th edn. Wiley, New York

    Google Scholar 

  • Nanda S, Mohanty P, Kozinski JA, Dalai AK (2014) Physico-chemical properties of bio-oils from pyrolysis of lignocellulosic biomass with high and slow heating rate. Energy Environ Res 4(3):21. doi:10.5539/eer.v4n3p21

    Article  Google Scholar 

  • Özçimen D, Ersoy-Meriçboyu A (2010) Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renew Energy 35(6):1319–1324. doi:10.1016/j.renene.2009.11.042

    Article  Google Scholar 

  • Pandey KK (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71(12):1969–1975. doi:10.1002/(SICI)1097-4628(19990321)71:12<1969:AID-APP6>3.0.CO;2-D

    Article  CAS  Google Scholar 

  • Pappa A, Mikedi K, Tzamtzis N, Statheropoulos M (2006) TG-MS analysis for studying the effects of fire retardants on the pyrolysis of pine-needles and their components. J Therm Anal Calorim 84(3):655–661. doi:10.1007/s10973-005-7201-y

    Article  CAS  Google Scholar 

  • Saâdaoui M, Saïd NM, Mhiri H, Caminat P, Le Palec G, Bournot P (2008) Study of the behaviour of a flame resulting from the combustion of pine needles in a cylindrical basket. Int J Therm Sci 47(3):293–305. doi:10.1016/j.ijthermalsci.2007.01.021

    Article  Google Scholar 

  • Saikia R, Chutia RS, Kataki R, Pant KK (2015) Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials. Bioresour Technol 188:265–272. doi:10.1016/j.biortech.2015.01.089

    Article  CAS  Google Scholar 

  • Shu YC, Chuang FS, Tsen WC, Chow JD, Gong C, Wen S (2008) Sulfonated poly (ether imide) and poly (ether sulfone) blends for direct methanol fuel cells. I. Sulfonation of PEI and characterization of the products. J Appl Polym Sci 107(5):2963–2969. doi:10.1002/app.27575

    Article  CAS  Google Scholar 

  • Singh RD, Gumber S, Tewari P, Singh SP (2016) Nature of forest fires in Uttarakhand: frequency, size and seasonal patterns in relation to pre-monsoonal environment. Curr Sci 111(2):398–403

    Article  Google Scholar 

  • Stark NM, Matuana LM (2007) Characterization of weathered wood–plastic composite surfaces using FTIR spectroscopy, contact angle, and XPS. Polym Degrad Stab 92(10):1883–1890. doi:10.1016/j.polymdegradstab.2007.06.017

    Article  CAS  Google Scholar 

  • Stolarski MJ, Szczukowski S, Tworkowski J, Krzyżaniak M, Gulczyński P, Mleczek M (2013) Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass. Renew Energy 57:20–26. doi:10.1016/j.renene.2013.01.005

    Article  Google Scholar 

  • Strezov V, Evans TJ, Hayman C (2008) Thermal conversion of elephant grass (Pennisetum Purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresour Technol 99(17):8394–8399. doi:10.1016/j.biortech.2008.02.039

    Article  CAS  Google Scholar 

  • Torri ID, Paasikallio V, Faccini CS, Huff R, Caramao EB, Sacon V, Oasmaa A, Zini CA (2016) Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization. Bioresour Technol 200:680–690. doi:10.1016/j.biortech.2015.10.086

    Article  CAS  Google Scholar 

  • Tzamtzis N, Karma S, Pappa A, Statheropoulos M (2006) On-line monitoring of pine needles combustion emissions in the presence of fire retardant using a “thermogravimetry (TG)-bridge/mass spectrometry method”. Anal Chim Acta 573:439–444. doi:10.1016/j.aca.2006.05.047

    Article  Google Scholar 

  • Valdés CF, Chejne F (2017) Effect of reaction atmosphere on the products of slow pyrolysis of coals. J Anal Appl Pyrolysis 126:105–117. doi:10.1016/j.jaap.2017.06.019

    Article  Google Scholar 

  • Yang Y, Brammer JG, Mahmood AS, Hornung A (2014) Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresour Technol 169:794–799. doi:10.1016/j.biortech.2014.07.044

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial assistance from All India Coordinated Research Project on Energy in Agriculture and Agro-based Industries of Indian Council of Agricultural Research and Advance Instrument Research Facility of Jawaharlal Nehru University, New Delhi for the GC/MS and Department of Environmental Sciences and Department of Agronomy, GB Pant University of Agriculture and Technology for FTIR and CHNO analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Mandal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11696_2017_306_MOESM1_ESM.docx

Supplementary Fig. S1. FTIR curve of pine needle biomass. Fig. S2. Peaks observed in GC/MS analyses of pine needle bio-oil. Fig. S3. FTIR curve of pine needle biochar (DOCX 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Bhattacharya, T.K., Verma, A.K. et al. Optimization of process parameters for bio-oil synthesis from pine needles (Pinus roxburghii) using response surface methodology. Chem. Pap. 72, 603–616 (2018). https://doi.org/10.1007/s11696-017-0306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0306-5

Keywords

Navigation