Chemical Papers

, Volume 72, Issue 4, pp 853–862 | Cite as

Mixed-valent tetranuclear manganese complexes with pentadentate Schiff-base ligand having a Y-shaped core

  • Masahiro Mikuriya
  • Sayuri Kudo
  • Chisa Matsumoto
  • Satoshi Kurahashi
  • Seiki Tomohara
  • Yoshiki Koyama
  • Daisuke Yoshioka
  • Ryoji Mitsuhashi
Original Paper
  • 28 Downloads

Abstract

Reaction of pentadentate Schiff-base ligands, 1,3-bis(3-methoxysalicylideneamino)-2-propanol (H3msap) with manganese(II) salts afforded tetranuclear mixed-valent manganese complexes, [Mn4(msap)2(CH3CO2)3(CH3O)(H2O)]·H2O (1) and [Mn4(msap)2(C6H5CO2)3(CH3O)] (2), which were characterized by elemental analysis, infrared and diffused reflectance spectra and temperature dependence of magnetic susceptibilities (4.5–300 K). Single-crystal X-ray crystallography of these complexes showed that four manganese atoms are chelated by two Schiff-base ligands and further coordinated by synsyn bridging, synanti bridging, and monodentate or bidentate-carboxylato groups, forming a Y-shaped cluster made up of two MnII and two MnIII atoms. Diffused reflectance spectra are featureless, showing broad bands around at near-UV and visible regions. Magnetic moments decrease with lowering of temperature, showing an antiferromagnetic behavior of these complexes.

Keywords

Manganese complex Mixed-valent complex Tetranuclear complex Schiff-base ligand 

Notes

Acknowledgements

The present work was partially supported by the “Open Research Center” Project for Private Universities: matching fund subsidy and Grants-in-Aid for Scientific Research No. 17K05820 from the Ministry of Education, Culture, Sports, Science and Technology.

References

  1. Addison AW, Rao TN, Reedijk J, Rjin J, Verschoor GC (1984) Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J Chem Soc Dalton Trans 7:1349–1356. doi: 10.1039/DT9840001349 CrossRefGoogle Scholar
  2. Ako AM, Mereacre V, Hewitt IJ, Clerac R, Lecren L, Anson CF, Powell AK (2006) Enhancing single molecule magnet parameters. Synthesis, crystal structures and magnetic properties of mixed-valent Mn4 SMMs. J Mater Chem 16:2579–2586. doi: 10.1039/b604611h CrossRefGoogle Scholar
  3. Anwar MU, Elliott AS, Thompson LK, Dawe LN (2011) Complexes of functionally modified hydrazone ligands—square, rectangular (M4), trigonal bipyramidal (M5) and pin-wheel (M6) motifs. Dalton Trans 40:4623–4635. doi: 10.1039/cldt10047e CrossRefGoogle Scholar
  4. Bagai R, Abboud KA, Christou G (2006) Ligand-induced distortion of a tetranuclear manganese butterfly complex. Dalton Trans 27:3306–3312. doi: 10.1039/b602192a CrossRefGoogle Scholar
  5. Baskar V, Shanmugam M, Sanudo EC, Shanmugam M, Collison D, McInnes EJL, Wei Q, Winpenny REP (2007) Metal cages using a bulky phosphonate as a ligand. Chem Commun 1:37–39. doi: 10.1039/b613756c CrossRefGoogle Scholar
  6. Beedle CC, Heroux KJ, Nakano M, DiPasquale AG, Rheingold AL, Hendrickson DN (2007) Antiferromagnetic tetranuclear manganese complex: wheel or dicubane? Polyhedron 26:2200–2206. doi: 10.1016/j.poly.2006.10.036 CrossRefGoogle Scholar
  7. Beedle CC, Stephenson CJ, Heroux KJ, Wernsdorfer W, Hendrickson DN (2008) Photoluminescent Mn4 single-molecule magnet. Inorg Chem 47:10798–10800. doi: 10.1021/ic801485k CrossRefGoogle Scholar
  8. Bertoncello K, Fallon GD, Murray KS, Tieknik ERT (1991) Manganese(III) complexes of a binucleating Schiff-base ligand based on the 1,3-diaminopropane-2-ol backbone. Inorg Chem 30:3562–3568. doi: 10.1021/ic00018a033 CrossRefGoogle Scholar
  9. Bonadies JA, Kirk ML, Lah MS, Kessissoglou DP, Hatfield WE, Pecoraro VL (1989) Structurally diverse manganese (III) Schiff base complexes: chains, dimers, and cages. Inorg Chem 28:2037–2044. doi: 10.1021/ic00310a008 CrossRefGoogle Scholar
  10. Brown ID, Wu KK (1976) Empirical parameters for calculating cation-oxygen bond valences. Acta Crystallogr Sect B 32:1957–1959. doi: 10.1107/S0567740876006869 CrossRefGoogle Scholar
  11. Brudvig GW, Crabtree RH (1989) Bioinorganic chemistry of manganese related to photosynthetic oxygen evolution. Prog Inorg Chem 37:99–142Google Scholar
  12. Chan MK, Armstrong WH (1989) A novel tetranuclear manganese complex that displays multiple high-potential redox processes. Synthesis, structure, and properties of {[Mn2(TPHPN)(O2CCH3)(H2O)]2O}(ClO4)4·2CH3OH. J Am Chem Soc 111:9121–9122. doi: 10.1021/ja00207a030 CrossRefGoogle Scholar
  13. Chiswell B, McKenzie ED, Lindoy LF (1987) 41 Manganese. In: Wilkinson G, Gillard RD, McCleverty JA (eds) Comprehensive coordination chemistry, vol 4. Pergamon Press, Oxford, pp 1–122Google Scholar
  14. Christou G (1989) Manganese carboxylate chemistry and its biological relevance. Acc Chem Res 22:328–335. doi: 10.1021/ar00165a006 CrossRefGoogle Scholar
  15. Coletta M, McLellan R, Cols J-M, Gagnon KJ, Teat SJ, Brechin EK, Dalgarno SJ (2016) Investigation into cluster formation with alkyl-tethered bis-calix[4]arenes. Supramol Chem 28:557–566. doi: 10.1080/10610278.2015.1136412 CrossRefGoogle Scholar
  16. Dau H, Haumann M (2008) The manganese complex of photosystem II in its reaction cycle-basic framework and possible realization at the atomic level. Coord Chem Rev 252:273–295. doi: 10.1016/j.ccr.2007.09.001 CrossRefGoogle Scholar
  17. Deville C, Granelli M, Downward AM, Besnard C, Guenee L, Williams AF (2014) Helicity inversion and redox chemistry of chiral manganese(II) cubanes. Dalton Trans 43:12917–12925. doi: 10.1039/c4dt01590h CrossRefGoogle Scholar
  18. Dey SK, Honecker A, Mitra P, Mandal SK, Mukherjee A (2012) Magnetostructural studies on tetranuclear manganese [MnIII 2MnII 2] complexes of 9-hydroxyphenalenone with weak π···π interactions. Eur J Inorg Chem 35:5814–5824. doi: 10.1002/ejic.201200800 CrossRefGoogle Scholar
  19. Dismukes GC (1996) Manganese enzymes with binuclear active sites. Chem Rev 96:2909–2926. doi: 10.1021/cr950053c CrossRefGoogle Scholar
  20. Foguet-Albiol D, O’Brien TA, Wernsdorfer W, Moulton B, Zaworotko M, Abboud KA, Christou G (2005) DFT computational rationalization of an unusual spin ground state in an Mn12 single-molecule magnet with a low-symmetry loop structure. Angew Chem Int Ed 44:897–901. doi: 10.1002/anie.200461820 CrossRefGoogle Scholar
  21. Gelasco A, Pecoraro VL (1993) [Mn (III)(2-OHsalpn)] 2 is an efficient functional model for the manganese catalases. J Am Chem Soc 115:7928–7929. doi: 10.1021/ja00070a069 CrossRefGoogle Scholar
  22. Grillo VA, Knapp MJ, Bollinger JC, Hendrickson DN, Christou G (1996) Bis(bipyridine) ligands in manganese carboxylate cluster chemistry: self-assembly of a cluster complex with two butterfly-like [Mn43–O)2]8+ cores. Angew Chem Int Ed Engl 35:1818–1820. doi: 10.1002/anie.199618181 CrossRefGoogle Scholar
  23. Grundmeier A, Dau H (2012) Structural models of the manganese complex of photosystem II and mechanistic implications. Biochim Biophys Acta 1817:88–105. doi: 10.1016/j.bbabio.2011.07.004 CrossRefGoogle Scholar
  24. Heroux KJ, Quddusi HM, Liu J, O’Brien JR, Nakano M, del Barco E, Hill S, Hendrickson DN (2011) Cationic Mn4 single-molecule magnet with a sterically isolated core. Inorg Chem 50:7367–7369. doi: 10.1021/ic201017r CrossRefGoogle Scholar
  25. Hirotsu M, Shimizu Y, Kuwamura N, Tanaka R, Kinoshita I, Takada R, Teki Y, Hashimoto H (2012) Anion-controlled assembly of four manganese ions: structural. magnetic, and electrochemical properties of tetramanganese complexes stabilized by Xanthene-bridged Schiff base ligands. Inorg Chem 51:766–768. doi: 10.1021/ic202287k CrossRefGoogle Scholar
  26. Jerzykiewicz LB, Utko J, Duczmal M, Starynowicz P, Sobota P (2010) Tetranuclear manganese complexes with [MnII 4] and [MnII 2MnIII 2] units: syntheses, structures, magnetic properties, and DFT study. Eur J Inorg Chem 28:4492–4498. doi: 10.1002/ejic.201000381 CrossRefGoogle Scholar
  27. Justyniak I, Kornowicz A, Prochowicz D, Sokolowski K, Lewinski J (2014) Synthesis and structure of an arylmanganese(II) 8-hydroxyquinolinate tetranuclear cluster. Z Anorg Allg Chem 640:2427–2430. doi: 10.1002/zaac.201400302 CrossRefGoogle Scholar
  28. Kakuta Y, Masuda N, Kurushima M, Hashimoto T, Yoshioka D, Sakiyama H, Hiraoka Y, Handa M, Mikuriya M (2014) Synthesis, crystal structures, spectral, electrochemical and magnetic properties of di-µ-phenoxido-bridged dinuclear copper(II) complexes with N-salicylidene-2-hydroxybenzylamine derivatives: axial coordination effect of dimethyl sulphoxide molecule. Chem Papers 68:923–931. doi: 10.2478/s11696-013-0528-0 CrossRefGoogle Scholar
  29. Karlsson EA, Lee B-L, Åkermark T, Johnston EV, Karkas MD, Sun J, Hansson O, Backvall J-E, Årermark B (2011) Photosensitized water oxidation by use of a bioinspired manganese catalyst. Angew Chem Int Ed 50:11715–11718. doi: 10.1002/anie.201104355 CrossRefGoogle Scholar
  30. Karotsis G, Teat SJ, Wernsdorfer W, Piligkos S, Dalgarno SJ, Brechin EK (2009) Calix[4]arene-based single-molecule magnets. Angew Chem Int Ed 48:8285–8288. doi: 10.1002/anie.200904094 CrossRefGoogle Scholar
  31. Khanra S, WeyhermUller T, Bill E, Chaudhuri P (2006) Deliberate synthesis for magnetostructural study of linear tetranuclear complexes BIIIMnIIMnIIBIII, MnIIIMnIIMnIIMnIII, MnIVMnIIMnIIMnIV, FeIIIMnIIMnIIFeIII, and CrIIIMnIIMnIICrIII. Influence of terminal ions on the exchange coupling. Inorg Chem 45:5911–5923. doi: 10.1021/ic060409a CrossRefGoogle Scholar
  32. Kostakis GE, Ako AM, Powell AK (2010) Structural motifs and topological representation of Mn coordination clusters. Chem Soc Rev 39:2238–2271. doi: 10.1039/b918192j CrossRefGoogle Scholar
  33. Lan Y, Novitch G, Clerac R, Tang J-K, Madhu NT, Hewitt IJ, Anson CE, Brooker S, Powell AK (2009) Di-, tetra- and hexanuclear iron(III), manganese(II/III) and copper(II) complexes of Schiff-base ligands derived from 6-substitued-2-formylphenols. Dalton Trans 10:1721–1727. doi: 10.1039/b818113f CrossRefGoogle Scholar
  34. Lecren L, Li YG, Wernsdorfer W, Roubeau O, Miyasaka H, Clerac R (2005a) [Mn4(hmp)6(CH3CN)2(H2O)4]4+: a new single-molecule magnet with the highest blocking temperature in the Mn4/hmp family of compounds. Inorg Chem Commun 8:626–630. doi: 10.1016/j.inoche.2005.04.007 CrossRefGoogle Scholar
  35. Lecren L, Wernsdorfer W, Li Y-G, Roubeau O, Miyasaka H, Clerac R (2005b) Quantum tunneling and quantum phase interference in a [MnII 2MnIII 2] single-molecule magnet. J Am Chem Soc 127:11311–11317. doi: 10.1021/ja050994z CrossRefGoogle Scholar
  36. Lecren L, Roubeau O, Coulon C, Li Y-G, Goff XF, Wernsdorfer W, Miyasaka H, Clerac R (2005c) Slow relaxation in a one-dimensional rational assembly of antiferromagnetically coupled [Mn4] single-molecule magnets. J Am Chem Soc 127:17353–17363. doi: 10.1021/ja0551685 CrossRefGoogle Scholar
  37. Li D, Wang H, Wang S, Pan Y, Li C, Dou J, Song Y (2010) A linear tetranuclear single-molecule magnet of MnII 2MnIII 2 with the anion of 2-(hydroxymethyl)pyridine. Inorg Chem 49:3688–3690. doi: 10.1021/ic100224j CrossRefGoogle Scholar
  38. Libby E, McCusker JK, Schmitt EA, Folting K, Hendrickson DN, Christou G (1991) Preparation and properties of models for the photosynthetic water oxidation center: spin frustration in the [Mn4O2(O2CR)7(pic)2] anion. Inorg Chem 30:3486–3495. doi: 10.1021/ic00018a019 CrossRefGoogle Scholar
  39. Liu H, Tian J, Kou Y, Zhang J, Feng L, Li D, Gu W, Liu X, Liao D, Cheng P, Ribas J, Yan S (2009) Synthesis, structures and magnetic properties of polynuclear mixed-valence MnIIMnIII complexes containing 3-(2-phenol)-5-(pyridin-2-yl)-1,2,4-triazole ligand. Dalton Trans 47:10511–10517. doi: 10.1039/b904553h CrossRefGoogle Scholar
  40. Lu Z, Fan C (2011) A novel tetranuclear MnII 2MnIII 2 cluster [Mn4(hmp)6(N3)4]: synthesis, crystal structure and magnetic properties. Inorg Chem Commmun 14:1329–1332. doi: 10.1016/j.inoche.2011.05.006 CrossRefGoogle Scholar
  41. Mandal D, Chatterjee PB, Bhattacharya S, Choi KY, Clerac R, Chaudhury M (2009) Tetra-, tri-, and mononuclear manganese(II/III) complexes of a phenol-based N2O2 capping ligand: use of carboxylates as ancillary ligands in tuning the nuclearity of the complexes. Inorg Chem 48:1826–1835. doi: 10.1021/ic801132r CrossRefGoogle Scholar
  42. Marino N, Armentano D, Mastropietro TF, Julve M, Munno GD, Martinez-Lillo J (2013) Cubane-type CuII 4 and MnII 2MnIII 2 complexes based on pyridoxine: a versatile ligand for metal assembling. Inorg Chem 52:11934–11943. doi: 10.1021/ic4016355 CrossRefGoogle Scholar
  43. Matsumoto T, Shiga T, Noguchi M, Onuki T, Newton GN, Hoshino N, Nakano M, Oshio H (2010) Contrasting magnetism of [MnIII 4] and [MnII 2MnIII 2] squares. Inorg Chem 49:368–370. doi: 10.1021/ic902052f CrossRefGoogle Scholar
  44. McCrea J, McKee V, Metcalfe T, Tandon SS, Wikaira J (2000) Geometric control of redox level in tetranuclear manganese and cobalt systems. Inorg Chim Acta 297:220–230. doi: 10.1016/S0020-1693(99)00361-8 CrossRefGoogle Scholar
  45. Mikata Y, Wakamatsu M, So H, Abe Y, Mikuriya M, Fukui K, Yano S (2005) N, N, N′, N′-Tetrakis(2-quinolylmethyl)-2-hydroxy-1,3-propanediamine (Htqhpn) as a supporting ligand for a low-valent (µ-O)2 tetranuclear manganese core. Inorg Chem 44:7268–7270. doi: 10.1021/ic050582r CrossRefGoogle Scholar
  46. Mikuriya M (2011) Mononuclear and oligonuclear manganese complexes with organic multidentate ligands. Nihon Kessho Gakkaishi 53:193–200. doi: 10.5940/jcrsj.53.193 CrossRefGoogle Scholar
  47. Mikuriya M, Kotera T (1998) Novel thilato-bridged tetranuclear manganese(II) and iron(II) complexes with adamantine-like cores. Chem Lett 27:971–972. doi: 10.1246/cl.1998.971 CrossRefGoogle Scholar
  48. Mikuriya M, Matsunami K (2005) Synthesis and structural characterization of a series of transition metal complexes with a tetradentate Schiff-base ligand derived from salicylaldehyde and 2-(2-aminoethylamino)ethanol. Mater Sci Poland 23:773–792Google Scholar
  49. Mikuriya M, Yamazaki Y (1995) Dinuclear manganese(III) complex with cyclam-based dodecadentate ligand bearing Schiff-base pendants (cyclam = 1,4,8,11-tetraazacyclotetradecane). Chem Lett 24:373–374. doi: 10.1246/cl.1995.373 CrossRefGoogle Scholar
  50. Mikuriya M, Yamato Y, Tokii T (1992a) 1,3-Bis(salicylideneamino)-2-propanol as the ligand for manganese(III) ions. Bull Chem Soc Jpn 65:1466–1468. doi: 10.1246/bcsj.65.1466 CrossRefGoogle Scholar
  51. Mikuriya M, Yamato Y, Tokii T (1992b) Synthesis, properties, and crystal structures of a series of dinuclear manganese(III) complexes with 1,5-bis(salicylideneamino)-3-pentanol and various anions: formation of a tetranuclear manganese(III) complex. Bull Chem Soc Jpn 65:2624–2637. doi: 10.1246/bcsj.65.2624 CrossRefGoogle Scholar
  52. Mikuriya M, Yamato Y, Tokii T (1992c) Ferromagnetically coupled dimanganese(III) complex and antiferromagnetically coupled diiron(III) complex with unsymmetrical ligands. Chem Lett 21:1571–1574. doi: 10.1246/cl.1992.1571 CrossRefGoogle Scholar
  53. Mikuriya M, Majima K, Yamato Y (1992d) Alkoxo-bridged trinuclear manganese(III) complexes with an isosceles triangle core. Chem Lett 21:1929–1932. doi: 10.1246/cl/1992.1929 CrossRefGoogle Scholar
  54. Mikuriya M, Dai J, Kakuta Y, Tokii T (1993a) Synthesis and characterization of a series of mononuclear manganese(IV) complexes with o-(salicylideneaminomethyl)phenol and its substituted derivatives. Bull Chem Soc Jpn 66:1132–1139. doi: 10.1246/bcsj.66.1132 CrossRefGoogle Scholar
  55. Mikuriya M, Fujii T, Tokii T, Kawamori A (1993b) Synthesis and characterization of mononuclear (Mn(II) and Mn(III)) and dinuclear (Mn(II)Mn(II) and Mn(II)Mn(III)) complexes with 2,6-bis[N-(2-pyridylethyl)iminomethyl]-4-methylphenol. Bull Chem Soc Jpn 66:1675–1686. doi: 10.1246/bcsj.66.1675 CrossRefGoogle Scholar
  56. Mikuriya M, Takebayashi H, Matsunami K (1994a) A manganese(III) complex with 1-[(2-hydroxyethyl)amino]-2-(salicylideneamino)ethane. Bull Chem Soc Jpn 67:3128–3130. doi: 10.1246/bcsj.67.3128 CrossRefGoogle Scholar
  57. Mikuriya M, Adachi F, Iwasawa H, Handa M, Koikawa M, Okawa H (1994b) Synthesis and characterization of thiolate-bridged manganese(II) complexes with NNS-tridentate thiolic ligands. Bull Chem Soc Jpn 67:3263–3270. doi: 10.1246/bcsj.67.3263 CrossRefGoogle Scholar
  58. Mikuriya M, Hashimoto Y, Kawamori A (1995a) Synthesis of a tetranuclear manganese complex with a cubane core at the MnIIMnIIIMnIIMnIII oxidation level. Chem Lett 24:1095–1096. doi: 10.1246/cl.1995.1095 CrossRefGoogle Scholar
  59. Mikuriya M, Nakadera K, Kotera T, Tokii T, Mori W (1995b) Sythesis and characterization of tetranuclear manganese(III) complexes with 2,6-bis(salicylideneaminomethyl)-4-methylphenol. Bull Chem Soc Jpn 68:3077–3083. doi: 10.1246/bcsj.68.3077 CrossRefGoogle Scholar
  60. Mikuriya M, Nukada R, Tokami W, Hashimoto Y, Fujii T (1996) Syntheis and characterization of manganese(III) complexes with 2-{N-[2-(4-imidazolyl)ethyl]iminomethyl}phenol or 2-{N-[2-(2-pyridyl)ethyl]iminomethyl}phenol. Bull Chem Soc Jpn 69:1573–1578. doi: 10.1246/bcsj.69.1573 CrossRefGoogle Scholar
  61. Mikuriya M, Hatano Y, Asato E (1997) Synthesis and structural characterization of manganese(II) complexes with N, N′-bis(2-pyridylmethylene)-1,3-diaminopropan-2-ol or N, N′-bis(2-pyridylmethylene)-1,3-propanediamine. Bull Chem Soc Jpn 70:2495–2507. doi: 10.1246/bcsj.70.2495 CrossRefGoogle Scholar
  62. Mikuriya M, Fukumoto H, Kako T (1998) Novel dinuclear manganese(II) complexes with monocapped trigonal prism geometries: implication of Mn-Mn distance on the catalase activity of dinuclear manganese center. Inorg Chem Commun 1:225–227. doi: 10.1016/S1387-7003(98)00061-6 CrossRefGoogle Scholar
  63. Mikuriya M, Kakuta Y, Nukada R, Kotera T, Tokii T (2001) Synthesis and structural characterization of di-μ-phenoxo-bridged dinuclear iron(III) complexes with ferromagnetic or weak antiferromagnetic coupling. Bull Chem Soc Jpn 74:1425–2434. doi: 10.1246/bcsj.74.1425 CrossRefGoogle Scholar
  64. Mikuriya M, Tanaka K, Inoue N, Yoshioka D, Lim JW (2003) Oligonuclear metal-assembly of antferromagnetic Ni4 and ferromagnetic Ni6 clusters with non-Schiff-base tetradentate ligand. Chem Lett 32:126–127. doi: 10.1246/cl.2003.126 CrossRefGoogle Scholar
  65. Mikuriya M, Nagao N, Kurahashi S, Tabuchi A, Tomohara S, Tsuboi M, Yoshioka D, Sakiyama H, Fuyuhiro A (2014) Mixed-valent tetranuclear MnIIMnIII3 complex with 1,3-diamino-2-hydroxypropane-N, N′, N″, N′′′-tetraacetic acid. Chem J Mold 9(1):100–105. doi: 10.19261/cjm.2014.09(1).12 CrossRefGoogle Scholar
  66. Mikuriya M, Masuda N, Kakuta Y, Minato S, Inui T, Yoshioka D (2016) Mononuclear cobalt(III) complexes with N-salicylidene-2-hydroxy-5-bromobenzylamine and N-salicyliden-2-hydroxy-5-chlorobenzylamine. Chem Papers 70:126–130. doi: 10.1515/chempap-2015-0164 Google Scholar
  67. Milios CJ, Raptopoulou CP, Terzis A, Vicente R, Escuer A, Perlepes SP (2003) Di-2-pyridyl ketone oxime in 3d-metal carboxylate cluster chemistry: a new family of mixed-valence MnII 2MnIII 3 complexes. Inorg Chem Commun 6:1056–1060. doi: 10.1016/S1387-7003(03)00183-7 CrossRefGoogle Scholar
  68. Milios CJ, Kyritsis P, Raptopoulou CP, Terzis A, Vicente R, Escuer A, Perlepes SP (2005) Di-2-pyridyl ketone oxime [(py)2CNOH] in manganese carboxylate chemistry: mononuclear, dinuclear and tetranuclear complexes, and partial transformation of (py)2CNOH to the gem-diolate(2–) derivative of di-2-pyridyl ketone leading to the formation of NO3 . Dalton Trans 3:501–511. doi: 10.1039/b412355g CrossRefGoogle Scholar
  69. Mitsuhashi R, Ogawa R, Ishikawa R, Suzuki T, Sunatsuki Y, Kawata S (2016) Preparation, structures and properties of manganese complexes containing amine-(amido or amidato)-phenolato type ligands. Inorg Chim Acta 447:113–120. doi: 10.1016/j.ica.2016.03.036 CrossRefGoogle Scholar
  70. Miyasaka H, Nakata K, Lecren L, Coulson C, Nakazawa Y, Fujisaki T, Sugiura K, Yamashita M, Clerac R (2006) Two-dimensional networks based on Mn4 complex linked by dicyanamide anion: from single-molecule magnet to classical magnetic behaviour. J Am Chem Soc 128:3770–3783. doi: 10.1021/ja0574062 CrossRefGoogle Scholar
  71. Mukhopadhyay S, Mandal SK, Bhaduri S, Armstrong WH (2004) Manganese cluster with relevance to photosystem II. Chem Rev 104:3981–4026. doi: 10.1021/cr0206014 CrossRefGoogle Scholar
  72. Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, Part B, 6th edn. John and Wiley & sons, Inc., Hoboken, p 64Google Scholar
  73. Nguyen TN, Abboud KA, Christou G (2013) A Mn4 single-molecule magnet with the defective-dicubane structure from the use of pyrenecarboxylic acid. Polyhedron 66:171–178. doi: 10.1016/j.poly.2013.03.041 CrossRefGoogle Scholar
  74. Pecoraro VL (ed) (1992) Manganese Redox Enzymes. VCH publishers, New YorkGoogle Scholar
  75. Price DJ, Batten SR, Berry KJ, Moubaraki B, Murray KS (2003) Structure and magnetism of trinuclear and tetranuclear mixed valent manganese clusters from dicyanonitrosomethanide derived ligands. Polyhedron 22:165–176. doi: 10.1016/S0277-5387(02)01266-4 CrossRefGoogle Scholar
  76. Razali MR, Chilton NF, Urbatsch A, Moubaraki B, Langley SK, Murray KS, Deacon GB, Batten SR (2013) Trinuclear and tetranuclear manganese clusters derived from cyano(imino(methoxy)methyl)nitrosomethanide (cmnm). Polyhedron 52:797–803. doi: 10.1016/j.poly.2012.07.048 CrossRefGoogle Scholar
  77. Ruettinger WF, Dismukes GC (2000) Conversion of core oxos to water molecules by 4e/4H+ reductive dehydration of the Mn4O2 6+ core in the manganese-oxo cubane complex Mn4O4(Ph2PO2)6: a partial model for photosynthetic water binding and activation. Inorg Chem 39:1021–1027. doi: 10.1021/ic9911421 CrossRefGoogle Scholar
  78. Saha A, Abboud KA, Christou G (2011) New mixed-valent Mn clusters from the use of N, N, N′, N′-tetrakis(2-hydroxyethyl)ethylenediamine (edteH2): mn3, Mn4, Mn6, and Mn10. Inorg Chem 50:12774–12784. doi: 10.1021/ic201916d CrossRefGoogle Scholar
  79. Sanudo EC, Grillo VA, Yoo J, Huffman JC, Bollinger JC, Hendrickson DN, Christou G (2001) Synthesis, structural characterization and magnetic properties of mixed-valent bis-bipyridine manganese carboxylate clusters. Polyhedron 20:1269–1272. doi: 10.1016/S0277-5387(01)00604-0 CrossRefGoogle Scholar
  80. Sanudo EC, Grillo VA, Knapp MJ, Bollinger JC, Huffman JC, Hendrickson DN, Christou G (2002) Tetranuclear manganese complexes with dimer-of-dimer and ladder structures from the use of a bis-bipyridyl ligand. Inorg Chem 41:2441–2450. doi: 10.1021/ic011262k CrossRefGoogle Scholar
  81. Shao CY, Zhu LL, Yang PP (2012) A new mixed-valence tetranuclear manganese [MnII 2MnIII 2] cluster. Z Anorg Allg Chem 638:1307–1310. doi: 10.1002/zaac.201200065 CrossRefGoogle Scholar
  82. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr Sect A 64:112–122. doi: 10.1107/S0108767307043930 CrossRefGoogle Scholar
  83. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C 71:3–8. doi: 10.1107/52053229614024218 CrossRefGoogle Scholar
  84. Shongwe MS, Mikuriya M, Aincough EW, Brodie AM (1994) Molecular structure of [MnIIIL2]– [H2L=N-(3,5-dichloro-2-hydroxybenzyl)glycine]: evidence for a pseudo-Jahn-Teller compression. J Chem Soc Chem Commun 887–888. doi: 10.1039/c39940000887 CrossRefGoogle Scholar
  85. Sobociriska M, Antkowiak M, Wojciechowski M, Kamieniarz G, Utko J, Lis T (2016) New tetranuclear manganese clusters with [MnII 3MnIII] and [MnII 2MnIII 2] metallic cores exhibiting low and high spin ground state. Dalton Trans 45:7303–7313. doi: 10.1039/c5dt04869a CrossRefGoogle Scholar
  86. Stamatatos TC, Poole KM, Abboud KA, Wernsdorfer W, O’Brien TA, Christou G (2008) High-spin Mn4 and Mn10 molecules: large spin changes with structures in mixed-valence MnII 4MnIII 6 clusters with azide and alkoxide-based ligands. Inorg Chem 47:5006–5021. doi: 10.1021/ic800268z CrossRefGoogle Scholar
  87. Stamatatos TC, Adam R, Raptopoulou CP, Rsycharis V, Ballesteros R, Abarca B, Perlepes SP, Boudalis AK (2012) The first member of a second generation family of ligands derived from metal-ion assisted reactivity of di-2,6-(2-pyridylcarbonyl)pyridine: synthesis and characterization of a MnII/III 4 rhombus. Inorg Chem Commun 15:73–77. doi: 10.1016/j.noche.2011.09.042 CrossRefGoogle Scholar
  88. Sunatsuki Y, Shimada H, Matsuo T, Nakamura M, Kai F, Matsumoto N, Re N (1998) Synthesis, magnetic properties, and incomplete double-cubane structure of manganese(III)-metal(II) complexes [Mn(MeOH)L(OH)M(bpy)]2 (M = Zn, Cu, Ni, and Mn; H4L = 1,2-Bis(2-hydroxybenzamido)benzene; bpy = 2,2′-Bipyridine). Inorg Chem 37:5566–6674. doi: 10.1021/ic980543y CrossRefGoogle Scholar
  89. Suzuki M, Sugisawa T, Senda H, Oshio H, Uehara A (1989) Synthesis and characterization of a novel tetranuclear manganese(II, III, III, II) mixed valence complex. Chem Lett 18:1091–1094. doi: 10.1246/cl.1989.1091 CrossRefGoogle Scholar
  90. Taylor SM, Karotsis G, McIntosh RD, Kennedy S, Teat SJ, Beavers CM, Wernsdorfer W, Piligkos S, Dalgarno SJ, Brechin EK (2011) A Family of Calix[4]arene-supported [MnII 2MnIII 2] clusters. Chem Eur J 17:7521–7530. doi: 10.1002/chem.201003327 CrossRefGoogle Scholar
  91. Tomida S, Matsushima H, Koikawa M, Tokii T (1999) Assembly of a tetranuclear mixed-valence manganese(II, III) complex from a binuclear mangnese(II) complex by photo-irradiation. Chem Lett 28:437–438. doi: 10.1246/cl.1999.437 CrossRefGoogle Scholar
  92. Wada S, Mikurya M (2007) Dinuclear manganese(III) complex of cyclam-based macrocyclic ligand with covalently linked coordination sites. In: Melnik By M, Sima J, Tatarko M (eds) Achievement in Coordination, Bioinorganic and Applied Inorganic Chemistry. Slovakia Technical University Press, Bratislava, Tatarko, pp 201–207Google Scholar
  93. Wada S, Mikuriya M (2008) Synthesis and structural characterization of dinuclear manganese(III) complexes with cyclam-based macrocyclic ligands having Schiff-base pendant arms as chelating agents. Bull Chem Soc Jpn 81:348–357. doi: 10.1246/bcsj.81.348 CrossRefGoogle Scholar
  94. Wada S, Saka K, Yoshioka D, Mikuriya M (2010) Synthesis, crystal structures, and magnetic properties of dinuclear and hexanuclear copper(II) complexes with cyclam-based macrocyclic ligands having four Schiff-base pendant arms. Bull Chem Soc Jpn 83:364–374. doi: 10.1246/bcsj.20090284 CrossRefGoogle Scholar
  95. Wang S, Wemple MS, Yoo J, Folting K, Huffman JC, Hagen KS, Hendrickson DN, Christou G (2000) Tetranuclear manganese carboxylate complexes with a trigonal pyramidal metal topology via controlled potential electrolysis. Inorg Chem 39:1501-1513. doi: 10.1021/ic991068m CrossRefGoogle Scholar
  96. Weatherburn DC, Mandal S, Mukhopadhyay S, Bhaduri S, Lindoy LF (2004) Manganese. In: McCleverty JA, Meyer TJ (eds) Comprehensive Coordination Chemistry, vol 5. Elsevier Ltd., Oxford, pp 1–125Google Scholar
  97. Wittick LM, Murray KS, Moubaraki B, Batten SR, Spiccia L, Berry KJ (2004) Synthesis, structure and magnetism of new single molecule magnets composed of MnII 2MnII 2 alkoxo-carboxylate bridged clusters capped by triethanolamine ligands. Dalton Trans 7:1003–1011. doi: 10.1039/b312672b CrossRefGoogle Scholar
  98. Wittick LM, Jones LF, Jensen P, Moubaraki B, Spiccia L, Berry KJ, Murray KS (2006) New mixed-valence MnII 2MnIII 2 clusters exhibiting an unprecedent MnII/III oxidation state distribution in their magnetically coupled cores. Dalton Trans 12:1534–1543. doi: 10.1039/b511817d CrossRefGoogle Scholar
  99. Yachandra KN, Sauer K, Klein MP (1996) Manganese cluster in photosynthesis: where plants oxidize water to dioxygen. Chem Rev 96:2927–2950. doi: 10.1021/cr950052k CrossRefGoogle Scholar
  100. Yang PP, Li LC (2009) From discrete [Mn4] cluster to 1D complex: two new mixed-valence manganese complexes with slow magnetization relaxation. Sci China Ser B-Chem 52:1463–1469. doi: 10.1007/s11426-009-0218-5 CrossRefGoogle Scholar
  101. Yang E-C, Harden N, Wernsdorfer W, Zakharov L, Brechin EK, Rheingold AL, Christou G, Hendrickson DN (2003) Mn4 single-molecule magnets with a planar diamond core and S = 9. Polyhedron 22:1857–1863. doi: 10.1016/S0277-5387(03)00173-6 CrossRefGoogle Scholar
  102. Yang C-I, Lee G-H, Wur C-S, Lin JG, Tsai H-L (2005) Syntheses, structures and single-molecule magnetic behaviors of two dicubane Mn4 complexes. Polyhedron 24:2215–2221. doi: 10.1016/j.poly.2005.03.105 CrossRefGoogle Scholar
  103. Yang H, Wang S-N, Li D-C, Zeng S-Y, Dou J-M (2014) A novel linear [Mn4N8O2] complex: in situ synthesis, structure and magnetic property. Inorg Chem Commun 46:134–136. doi: 10.1016/j.inoche.2014.05.031 CrossRefGoogle Scholar
  104. Yang H, Cao F, Li D, Zeng S, Song Y, Dou J (2015) Solvent dependent reactivities of di-, tetra- and hexanuclear managanese complexes: syntheses, structures and magnetic properties. Dalton Trans 44:6620–6629. doi: 10.1039/c4dt03822c CrossRefGoogle Scholar
  105. Yoo J, Brechin EK, Yamaguchi A, Nakano M, Huffman JC, Maniero AL, Brunel L-C, Awaga K, Ishimoto H, Christou G, Hendrickson DN (2000) Single-molecule magnets: a new class of tetranuclear manganese magnets. Inorg Chem 39:3615–3623. doi: 10.1021/ic000237w CrossRefGoogle Scholar
  106. Yoo J, Yamaguchi A, Nakano M, Krzystek J, Streib WE, Brunel L-C, Ishimoto H, Christou G, Hendrickson DN (2001) Mixed-valence tetranuclear manganese single-molecule magnets. Inorg Chem 40:4604–4616. doi: 10.1021/ic0012928 CrossRefGoogle Scholar
  107. Zaleski CM, Weng TC, Dendrinou-Samara C, Alexiou M, Kanakaraki P, Hsieh WY, Kampf J, Penner-Hahn JE, Pecoraro VL, Kessinssoglou DP (2008) Structural and physical characterization of tetranuclear [MnII 3MnIV] and [MnII 2MnIII 2] valence-isomer manganese complexes. Inorg Chem 47:6127–6136. doi: 10.1021/ic702109c CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2017

Authors and Affiliations

  1. 1.Department of Applied Chemistry for Environment and Research Center for Coordination Molecule-based Devices, School of Science and TechnologyKwansei Gakuin UniversitySandaJapan

Personalised recommendations