Skip to main content
Log in

Cu(BDC) as a catalyst for rapid reduction of methyl orange: room temperature synthesis using recycled terephthalic acid

  • Short Communication
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Terephthalic acid was recycled from waste PET bottles with a basic hydrolysis technique and characterized with UV and FTIR spectroscopy. Copper-based metal–organic framework Cu(BDC) was synthesized at room temperature without any additive; two different temperatures were chosen to activate the obtained material. Characterization studies were performed using XRD, N2 physisorption, STEM and EDX. The obtained material was tested as a catalyst for the reduction of methyl orange with NaBH4 in aqueous solutions. Thermal activation at 160 °C proved to be mandatory for catalytic activity; although higher temperature activation did not cause significant enhancement. Rapid dye removal was monitored by continuous photometry at λ max. The results were quite satisfactory (about 85% removal in 5 min); even higher than the published results for precious metal (i.e., Au, Pt and Ag) nanoparticles. In an increased reaction scale, UV–visible spectra and mass spectrum were recorded to help elucidating the possible reaction mechanism. In addition, recycling experiment were performed in 100-ml scale without any kind of re-activation (washing or drying) to show the ability of Cu(BDC) as a stable catalyst for reductive dye removal (and probably similar reactions as well).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

References

  • Burrows A, Lamberti C, Pidko E, Minguez IL, de Vos D, Hupp JT, Juan-Alcaniz J, García H, Palkovits R, Kapteijn F (2013) Metal organic frameworks as heterogeneous catalysts. R Soc Chem. eISBN:978-1-84973-758-6

  • Carson CG, Hardcastle K, Schwartz J, Liu X, Hoffmann C, Gerhardt RA, Tannenbaum R (2009) Synthesis and structure characterization of copper terephthalate metal–organic frameworks. Eur J Inorg Chem 2009:2338–2343. doi:10.1002/ejic.200801224

    Article  Google Scholar 

  • Carson CG, Brunnello G, Lee SG, Jang SS, Gerhardt RA, Tannenbaum R (2014) Structure solution from powder diffraction of copper 1, 4-benzenedicarboxylate. Eur J Inorg Chem 2014:2140–2145. doi:10.1002/ejic.201301543

    Article  CAS  Google Scholar 

  • Carta D, Cao G, D’Angeli C (2003) Chemical recycling of poly (ethylene terephthalate) (PET) by hydrolysis and glycolysis. Environ Sci Pollut Res 10:390–394. doi:10.1065/espr2001.12.104.8

    Article  CAS  Google Scholar 

  • Centi G, Ciambelli P, Perathoner S, Russo P (2002) Environmental catalysis: trends and outlook. Catal Today 75:3–15. doi:10.1016/S0920-5861(02)00037-8

    Article  CAS  Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085. doi:10.1016/j.biortech.2005.05.001

    Article  CAS  Google Scholar 

  • Dang GH, Vu YT, Dong QA, Le DT, Truong T, Phan NT (2015) Quinoxaline synthesis via oxidative cyclization reaction using metal–organic framework Cu (BDC) as an efficient heterogeneous catalyst. Appl Catal A 491:189–195. doi:10.1016/j.apcata.2014.11.009

    Article  CAS  Google Scholar 

  • Dias EM, Petit C (2015) Towards the use of metal–organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field. J Mater Chem A 3:22484–22506. doi:10.1039/C5TA05440K

    Article  CAS  Google Scholar 

  • Dikio ED, Farah AM (2013) Synthesis, characterization and comparative study of copper and zinc metal organic frameworks. Chem Sci Trans 2:1386–1394. doi:10.7598/cst2013.520

    Google Scholar 

  • Dumée LF, Maina JW, Merenda A, Reis R, He L, Kong L (2017) Hybrid thin film nano-composite membrane reactors for simultaneous separation and degradation of pesticides. J Membr Sci 528:217–224. doi:10.1016/j.memsci.2017.01.041

    Article  Google Scholar 

  • Emrooz HBM, Rahmani AR, Gotor FJ (2017) Synthesis, characterisation, and photocatalytic behaviour of mesoporous ZnS nanoparticles prepared using by-product templating. Aust J Chem. doi:10.1071/CH17192

    Google Scholar 

  • Fan J, Guo Y, Wang J, Fan M (2009) Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J Hazard Mater 166:904–910. doi:10.1016/j.jhazmat.2008.11.091

    Article  CAS  Google Scholar 

  • Farrusseng D (2011) Metal-organic frameworks: applications from catalysis to gas storage. Wiley. doi:10.1002/9783527635856

  • Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:1230444. doi:10.1126/science.1230444

    Article  Google Scholar 

  • Gupta N, Singh HP, Sharma RK (2011) Metal nanoparticles with high catalytic activity in degradation of methyl orange: an electron relay effect. J Mol Catal A: Chem 335:248–252. doi:10.1016/j.molcata.2010.12.001

    Article  CAS  Google Scholar 

  • He L, Dumee LF, Liu D, Velleman L, She F, Banos C, Davies JB, Kong L (2015) Silver nanoparticles prepared by gamma irradiation across metal-organic framework templates RSC. Advances 5(14):10707–10715. doi:10.1039/C4RA10260F

    CAS  Google Scholar 

  • Kubica P, Wolinska-Grabczyk A, Grabiec E, Libera M, Wojtyniak M, Czajkowska S, Domański M (2016) Gas transport through mixed matrix membranes composed of polysulfone and copper terephthalate particles. Microporous Mesoporous Mater 235:120–134. doi:10.1016/j.micromeso.2016.07.037

    Article  CAS  Google Scholar 

  • Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459. doi:10.1039/B807080F

    Article  CAS  Google Scholar 

  • Luz I, i Xamena FL, Corma A (2010) Bridging homogeneous and heterogeneous catalysis with MOFs: “Click” reactions with Cu-MOF catalysts. J Catal 276:134–140. doi:10.1016/j.jcat.2010.09.010

    Article  CAS  Google Scholar 

  • Maina JW, Pozo-Gonzalo C, Kong L, Schutz J, Hill M, Dumee LF (2017) Metal organic framework based catalysts for CO2 conversion. Mater Horizons 4(3):345–361. doi:10.1039/C6MH00484A

    Article  CAS  Google Scholar 

  • McMullan G et al (2001) Microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56:81–87. doi:10.1007/s002530000587

    Article  CAS  Google Scholar 

  • Mohaghegh N, Kamrani S, Tasviri M, Elahifard M, Gholami M (2015) Nanoporous Ag2O photocatalysts based on copper terephthalate metal–organic frameworks. J Mater Sci 50:4536–4546. doi:10.1007/s10853-015-9003-3

    Article  CAS  Google Scholar 

  • Mondal A, Adhikary B, Mukherjee D (2015) Room-temperature synthesis of air stable cobalt nanoparticles and their use as catalyst for methyl orange dye degradation. Colloids Surf A 482:248–257. doi:10.1016/j.colsurfa.2015.05.011

    Article  CAS  Google Scholar 

  • Reife A, Reife A, Freeman HS (1996) Environmental chemistry of dyes and pigments. John Wiley & Sons ISBN: 978-0-471-58927-3

  • Scherrer P (1912) Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Springer, Kolloidchemie Ein Lehrbuch, pp 387–409

    Google Scholar 

  • Senthil Kumar R, Nithya C, Gopukumar S, Anbu Kulandainathan M (2014) Diamondoid-structured Cu–dicarboxylate-based metal–organic frameworks as high-capacity anodes for lithium-ion storage. Energy Technol 2:921–927. doi:10.1002/ente.201402076

    Article  CAS  Google Scholar 

  • Shu QW, Lan J, Gao MX, Wang J, Huang CZ (2015) Controlled synthesis of CuS caved superstructures and their application to the catalysis of organic dye degradation in the absence of light. CrystEngComm 17:1374–1380. doi:10.1039/C4CE02120G

    Article  CAS  Google Scholar 

  • Zonouzi A, Afjei S, Rahmani A, Ng S (2016) Novel synthesis of some 2-aminochromene derivatives using nano-sized zirconium oxide as catalyst. Org Prep Proced Int 48:45–54. doi:10.1080/00304948.2016.1127099

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank University of Tehran, IROST, PCRC and the Iranian National Nanotechnology Initiative for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossein Rahmani or Afsaneh Zonouzi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 787 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, A., Rahmani, H. & Zonouzi, A. Cu(BDC) as a catalyst for rapid reduction of methyl orange: room temperature synthesis using recycled terephthalic acid. Chem. Pap. 72, 449–455 (2018). https://doi.org/10.1007/s11696-017-0297-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0297-2

Keywords

Navigation