Skip to main content
Log in

Retention of phosphates from aqueous solutions with in sol–gel-derived amorphous CaO–MgO–Al2O3–SiO2 system as a model of blast furnace slag

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The article proposes new possibilities for the estimation of the maximum phosphate retention capacities (PRC) in blast furnace slags using their modeling. The amorphous blast furnace slag model (BFS–SG) and slag samples along the joining of the CaO:SiO2 = 1 and (CaO + MgO):SiO2 = 1 of the CaO–MgO–Al2O3–SiO2 phase diagram were prepared by the sol–gel method. The surface analysis of BFS–SG was performed and the results were compared with real BFS. Batch adsorption experiments were performed to evaluate the phosphate removal of slags. SEM analysis and Raman spectroscopy were used to identify phosphate adsorbed forms. Phosphate retention is realized by the surface reactions of hydration products resulting in a nanostructured Ca-hydroxyapatite. The acid–base properties of the model samples in the selected cross-sections were characterized by the values of the optical basicity. An excellent linear relation between the phosphorus retention capacity (PRC) and the optical basicity of the model samples was found, which allows an estimation of slag retention capacities and the forms of adsorbed phosphorus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Q e :

Equilibrium amounts of P (mg g−1)

c e :

Equilibrium concentration (mg dm−3)

Q m :

Langmuir retention maximum (mg g−1)

a L :

Langmuir constant (dm3 mg−1)

R L :

Separation factor

c 0 :

Initial concentration of adsorbate (mg dm−3)

V meso :

Mesopore volume (cm3 g−1)

V micro :

Volume of micropores (cm3 g−1)

w i :

Mass fraction (%)

PRC:

Phosphorus retention capacity (mg g−1)

Λ :

Optical basicity

BFS:

Blast furnace slag

SG:

Amorphous slag model prepared by the sol–gel method

B:

Basicity

References

  • Agyei MN, Strydom CA, Potgieter JH (2000) An investigation of phosphate ion adsorption from aqueous solution by fly ash and slag. Cem Concr Res 30:823–826. doi:10.1016/S0008-8846(00)00225-8

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpää M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-A review. Chem Eng J 157:277–296. doi:10.1016/j.cej.2010.01.007

    Article  CAS  Google Scholar 

  • Catauro M, Bollino F, Renella RA, Papale F (2015) Sol–gel synthesis of SiO2–CaO–P2O5 glasses: influence of the heat treatment on their bioactivity and biocompatibility. Ceram Int 41:12578–12588. doi:10.1016/j.ceramint.2015.06.075

    Article  CAS  Google Scholar 

  • Fu YP, Lin CH (2003) Synthesis and microwave characterization of 2(MgO, CaO)-2 Al2O3-5 SiO2 glass ceramic from the sol–gel proces. J Mater Sci 38:3081–3084

    Article  CAS  Google Scholar 

  • Guerra-López JR, Echeverría GA, Güida JA, Viña R, Punte G (2015) Synthetic hydroxyapatites doped with Zn(II) studied by X-ray diffraction, infrared, Raman and thermal analysis. J Phys Chem Solids 81:57–65. doi:10.1016/j.jpcs.2015.01.017

    Article  Google Scholar 

  • Guo-Hua Zhang, Kuo-Chih Chou (2010) Model for evaluating density of molten slag with optical basicity. J Iron Steel Res Int 17(4):1–4. doi:10.1016/S1006-706X(10)60077-5

    Article  Google Scholar 

  • Huczala R, Kostura B, Matýsek D (2017) Study of phosphate retention on model of amorphous blast furnace slags. Hut listy (Metallurgical J) 2:28–32

  • Hwa-Jun L, Sang-Woo K, Sung-Soo R (2015) Sintering behavior of aluminum nitride ceramics with MgO–CaO–Al2O3–SiO2 glass additive. Int J Refract Met Hard 53:46–50. doi:10.1016/j.jrmhm.2015.04.013

    Article  Google Scholar 

  • Johansson L (1999) Blast furnace slag as phosphorus sorbents—column studies. Sci Total Environ 229:89–97

    Article  CAS  Google Scholar 

  • Johansson L, Gustafsson JP (2000) Phosphate removal using blast furnace slags and opoka—mechanisms. Water Res 34:259–265. doi:10.1016/S0043-1354(99)00135-9

    Article  CAS  Google Scholar 

  • Kostura B, Kulveitová H, Leško J (2005) Blast furnace slags as sorbents of phosphate from water solutions. Water Res 39:1795–1802. doi:10.1016/j.watres.2005.03.010

    Article  CAS  Google Scholar 

  • Kostura B, Matýsek D, Kukutschová J, Leško J (2012) Phosphate interaction with calcined form of Mg–Al–CO3 hydrotalcite in aqueous solutions. Ann Chim Sci Mat 37(1):11–20. doi:10.3166/acsm.37.11-20

    Article  CAS  Google Scholar 

  • Kostura B, Dvorský R, Kukutschová J, Študentová S, Bednář J, Mančík P (2017) Preparation of the sorbent with a high active sorption surface based on blast furnace slag for phosphate removal from wastewater. Environ Prot Eng 43:161–168. doi:10.5277/epe170113

    Google Scholar 

  • Lee SH, Vigneswaran S, Chung Y (1997) A detailed investigation of phosphorus removal in soil and slag media. Environ Technol 18(7):699–709. doi:10.1080/09593331808616588

    Article  CAS  Google Scholar 

  • Ma J, Chen CZ, Wang DG, Jiao Y, Shi JZ (2010) Effect of magnesia on the degradability and bioactivity of sol–gel derived SiO2–CaO–MgO–P2O5 system glasses. Colloid Surf B 81:87–95. doi:10.1016/j.colsurfb.2010.06.022

    Article  CAS  Google Scholar 

  • Mangwandi C, Albadarin AB, Gloucheux Y, Walker GM (2014) Removal of ortho-phosphate from aqueous solution by adsorption onto dolomite. J Environ Chem Eng 2:1123–1130. doi:10.1016/j.jece.2014.04.010

    Article  CAS  Google Scholar 

  • Oguz E (2004) Removal of phosphate from aqueous solution with blast furnace slag. J Hazard Mater B114:131–137. doi:10.1016/j.jhazmat.2004.07.010

    Article  Google Scholar 

  • Potgieter-Vermaak SS, Potgieter JH, Belleil M, DeWeerdt F, Van Grieken R (2006) The application of Raman spectrometry to the investigation of cement part II: a micro-Raman study of OPC, slag and fly ash. Cem Concr Res 36:663–670. doi:10.1016/j.cemconres.2005.09.010

    Article  CAS  Google Scholar 

  • Sakadevan K, Bavor HJ (1998) Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems. Water Res 32:393–399. doi:10.1016/S0043-1354(97)00271-6

    Article  CAS  Google Scholar 

  • Sales M, Alarcon J (1995) Crystallization of sol–gel derived glass ceramic powders in the CaO–MgO–Al2O3–SiO2 systém, part II. J Mater Sci 30:2341–2347

    Article  CAS  Google Scholar 

  • Tsuyuki N, Koizumi K (1999) Granularity and surface structure of ground granulated blast-furnace slags. J Am Ceram Soc 82(8):2188–2192

    Article  CAS  Google Scholar 

  • Wang M, Zuo R, Jin J, Su S, Zhai J (2011) Investigation of the structure evolution process in sol–gel derived CaO–B2O3–SiO2 glass ceramics. J Non-Cryst Solids 357:1160–1163. doi:10.1016/j.jnoncrysol.2010.11.028

    Article  CAS  Google Scholar 

  • Yamini D, Devanand Venkatasubbu G, Kumar J, Ramakrishnan V (2014) Raman scattering studies on PEG functionalized hydroxyapatite nanoparticles. Spectrochim Acta A 117:299–303. doi:10.1016/j.saa.2013.07.064

    Article  CAS  Google Scholar 

  • Yang J, Wang S, Lu Z, Lou S (2009) Converter slag-coal cinder columns for the removal of phosphorous and other pollutants. J Hazard Mater 168:331–337. doi:10.1016/j.jhazmat.2009.02.024

    Article  CAS  Google Scholar 

  • Young RW, Duffy JA, Hassall GJ, Xu Z (1992) Use of optical basicity concept for determining phosphorus and sulphur slag-metal partitions. Ironmak Steelmak 19:201–219

    CAS  Google Scholar 

  • Zolotar MS, Zavaglia CA (1999) Study of the sol–gel processing of glass-ceramic powders in the SiO2–Al2O3–CaO–CaF2 systém. I. Effect of powder composition on gel time and temperature. J Non-Cryst Solids 247:50–57. doi:10.1016/s0022-3093(99)00032-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research is supported by the projects SP2016/77 and SP2017/50. The authors would like to thank Dr. K. Dědková from Centrum for Nanotechnology, VSB-TU Ostrava, for measuring SEM-analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Kostura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostura, B., Huczala, R., Ritz, M. et al. Retention of phosphates from aqueous solutions with in sol–gel-derived amorphous CaO–MgO–Al2O3–SiO2 system as a model of blast furnace slag. Chem. Pap. 72, 401–408 (2018). https://doi.org/10.1007/s11696-017-0289-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0289-2

Keywords

Navigation