Skip to main content
Log in

Degradation of ofloxacin by UVA-LED/TiO2 nanotube arrays photocatalytic fuel cells

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The degradation of ofloxacin (OFX) at low concentration in aqueous solution by UVA-LED/TiO2 nanotube arrays photocatalytic fuel cells (UVA-LED/TiO2 NTs PFCs) was investigated. TiO2 nanotube arrays (TiO2 NTs) photoanode prepared by anodization-constituted anatase–rutile bicrystalline framework. The results indicated that the degradation efficiency of OFX by UVA-LED/TiO2 NTs PFC was significantly enhanced by 14.3% compared with UVA-LED/TiO2 NTs photocatalysis. The pH affected the degradation efficiency markedly; the highest degradation efficiency (95.0%) and the pseudo-first-order reaction rate constant k value (0.049 min−1) were achieved in neutral condition (pH 7.0). The degradation efficiency increased with the increasing concentration of dissolved oxygen (DO) in the UVA-LED/TiO2 NTs PFC. The main reactive species of OFX degradation are positive holes (h+) and superoxide ion radicals (O ·−2 ) in a DO sufficient condition. Furthermore, the possible pathways of OFX degradation were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdullah M, Kamarudin SK (2017) Titanium dioxide nanotubes (TNT) in energy and environmental applications: an overview. Renew Sustain Energy Rev 76:212–225. doi:10.1016/j.rser.2017.01.057

    Article  CAS  Google Scholar 

  • Alam MS, Rao B, Janata E (2003) (OH)-O-center dot reactions with aliphatic alcohols: evaluation of kinetics by direct optical absorption measurement. A pulse radiolysis study. Radiat Phys Chem 67:723–728. doi:10.1016/s0969-806x(03)00310-4

    Article  CAS  Google Scholar 

  • An T, Yang H, Song W, Li G, Luo H, Cooper WJ (2010) Mechanistic considerations for the advanced oxidation treatment of fluoroquinolone pharmaceutical compounds using TiO2 heterogeneous catalysis. J Phys Chem A 114:2569–2575. doi:10.1021/jp911349y

    Article  CAS  Google Scholar 

  • Barbosa J, Berges R, Toro I, SanzNebot V (1997) Protonation equilibria of quinolone antibacterials in acetonitrile-water mobile phases used in LC. Talanta 44:1271–1283. doi:10.1016/s0039-9140(96)02188-1

    Article  CAS  Google Scholar 

  • Carrizosa I, Munuera G (1977) Study of interaction of alcohols with TiO2.1. Decomposition of ethanol, 2-propanol, and tert-butanol on anatase. J Catal 49:174–188. doi:10.1016/0021-9517(77)90253-6

    Article  CAS  Google Scholar 

  • Conkle JL, Lattao C, White JR, Cook RL (2010) Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil. Chemosphere 80:1353–1359. doi:10.1016/j.chemosphere.2010.06.012

    Article  CAS  Google Scholar 

  • Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582. doi:10.1016/j.surfrep.2008.10.001

    Article  CAS  Google Scholar 

  • Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874. doi:10.1007/s10853-010-5113-0

    Article  CAS  Google Scholar 

  • Hapeshi E, Achilleos A, Vasquez MI, Michael C, Xekoukoulotakis NP, Mantzavinos D, Kassinos D (2010) Drugs degrading photocatalytically: kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions. Water Res 44:1737–1746. doi:10.1016/j.watres.2009.11.044

    Article  CAS  Google Scholar 

  • Hu C, Kelm D, Schreiner M, Wollborn T, Madler L, Teoh WY (2015) Designing photoelectrodes for photocatalytic fuel cells and elucidating the effects of organic substrates. ChemSusChem 8:4005–4015. doi:10.1002/cssc.201500793

    Article  CAS  Google Scholar 

  • Inagaki M, Nonaka R, Tryba B, Morawski AW (2006) Dependence of photocatalytic activity of anatase powders on their crystallinity. Chemosphere 64:437–445. doi:10.1016/j.chemosphere.2005.11.052

    Article  CAS  Google Scholar 

  • Jimenez-Villarin J, Serra-Clusellas A, Martinez C, Conesa A, Garcia-Montano J, Moyano E (2016) Liquid chromatography coupled to tandem and high resolution mass spectrometry for the characterisation of ofloxacin transformation products after titanium dioxide photocatalysis. J Chromatogr A 1443:201–210. doi:10.1016/j.chroma.2016.03.063

    Article  CAS  Google Scholar 

  • Jo W-K, Tayade RJ (2014) New generation energy-efficient light source for photocatalysis: leds for environmental applications. Ind Eng Chem Res 53:2073–2084. doi:10.1021/ie404176g

    Article  CAS  Google Scholar 

  • Kumar SG, Rao KSRK (2017) Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO 2, WO 3 and ZnO). Appl Surf Sci 391:124–148. doi:10.1016/j.apsusc.2016.07.081

    Article  CAS  Google Scholar 

  • Li Q, Shang JK (2009) Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance. Environ Sci Technol 43:8923–8929. doi:10.1021/es902214s

    Article  CAS  Google Scholar 

  • Li Y, Niu JF, Yin LF, Wang WL, Bao YP, Chen J, Duan YP (2011) Photocatalytic degradation kinetics and mechanism of pentachlorophenol based on superoxide radicals. J Environ Sci-China 23:1911–1918. doi:10.1016/S1001-0742(10)60563-3

    Article  CAS  Google Scholar 

  • Li R, Williams SE, Li Q, Zhang J, Yang C, Zhou A (2014) Photoelectrocatalytic degradation of ofloxacin using highly ordered TiO2 nanotube arrays. Electrocatalysis 5:379–386. doi:10.1007/s12678-014-0204-3

    Article  CAS  Google Scholar 

  • Liu Y et al (2011) Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell. Water Res 45:3991–3998. doi:10.1016/j.watres.2011.05.004

    Article  CAS  Google Scholar 

  • Malato S, Fernandez-Ibanez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59. doi:10.1016/j.cattod.2009.06.018

    Article  CAS  Google Scholar 

  • Márquez G, Rodríguez EM, Maldonado MI, Álvarez PM (2014) Integration of ozone and solar TiO2-photocatalytic oxidation for the degradation of selected pharmaceutical compounds in water and wastewater. Sep Purif Technol 136:18–26. doi:10.1016/j.seppur.2014.08.024

    Article  Google Scholar 

  • Munirathinam B, Pydimukkala H, Ramaswamy N, Neelakantan L (2015) Influence of crystallite size and surface morphology on electrochemical properties of annealed TiO2 nanotubes. Appl Surf Sci 355:1245–1253. doi:10.1016/j.apsusc.2015.08.017

    Article  CAS  Google Scholar 

  • Paul T, Machesky ML, Strathmann TJ (2012) Surface complexation of the zwitterionic fluoroquinolone antibiotic ofloxacin to nano-anatase TiO2 photocatalyst surfaces. Environ Sci Technol 46:11896–11904. doi:10.1021/es302097k

    Article  CAS  Google Scholar 

  • Peres MS, Maniero MG, Guimaraes JR (2015) Photocatalytic degradation of ofloxacin and evaluation of the residual antimicrobial activity. Photochem Photobiol Sci 14:556–562. doi:10.1039/c4pp00256c

    Article  CAS  Google Scholar 

  • Prieto-Rodriguez L, Miralles-Cuevas S, Oller I, Fernandez-Ibanez P, Agueera A, Blanco J, Malato S (2012) Optimization of mild solar TiO2 photocatalysis as a tertiary treatment for municipal wastewater treatment plant effluents. Appl Catal B Environ 128:119–125. doi:10.1016/j.apcatb.2012.03.034

    Article  CAS  Google Scholar 

  • Rodrigues-Silva C, Maniero MG, Peres MS, Guimaraes JR (2014) Occurrence and degradation of quinolones by advanced oxidation processes. Quim Nova 37:868–885. doi:10.5935/0100-4042.20140139

    CAS  Google Scholar 

  • Rodriguez EM, Marquez G, Tena M, Alvarez PM, Beltran FJ (2015) Determination of main species involved in the first steps of TiO2 photocatalytic degradation of organics with the use of scavengers: the case of ofloxacin. Appl Catal B Environ 178:44–53. doi:10.1016/j.apcatb.2014.11.002

    Article  CAS  Google Scholar 

  • Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50:2904–2939. doi:10.1002/anie.201001374

    Article  CAS  Google Scholar 

  • Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986. doi:10.1021/cr5001892

    Article  CAS  Google Scholar 

  • Tso C-p, Zhung C-m, Shih Y-h, Tseng Y-M, Wu S-c, Doong R-a (2010) Stability of metal oxide nanoparticles in aqueous solutions. Water Sci Technol 61:127–133. doi:10.2166/wst.2010.787

    Article  CAS  Google Scholar 

  • Turchi CS, Ollis DF (1990) Photocatalytic degradation of organic-water contaminants: mechanisms involving hydroxyl radical attack. J Catal 122:178–192. doi:10.1016/0021-9517(90)90269-p

    Article  CAS  Google Scholar 

  • Van Wieren EM, Seymour MD, Peterson JW (2012) Interaction of the fluoroquinolone antibiotic, ofloxacin, with titanium oxide nanoparticles in water: adsorption and breakdown. Sci Total Environ 441:1–9. doi:10.1016/j.scitotenv.2012.09.067

    Article  Google Scholar 

  • Venkateswarlu K, Chandra Bose A, Rameshbabu N (2010) X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson–Hall analysis. Phys B 405:4256–4261. doi:10.1016/j.physb.2010.07.020

    Article  CAS  Google Scholar 

  • Wang B, Di J, Zhang P, Xia J, Dai S, Li H (2017) Ionic liquid-induced strategy for porous perovskite-like PbBiO 2 Br photocatalysts with enhanced photocatalytic activity and mechanism insight. Appl Catal B 206:127–135. doi:10.1016/j.apcatb.2016.12.049

    Article  CAS  Google Scholar 

  • Yang M-Q, Zhang Y, Zhang N, Tang Z-R, Xu Y-J (2013) Visible-light-driven oxidation of primary C–H bonds over CdS with dual co-catalysts graphene and TiO2. Sci Rep. doi:10.1038/srep03314

    Google Scholar 

Download references

Acknowledgements

Supports for this research were provided by the National Natural Science Foundation of China (No. 51108481), National Water Pollution Control and Treatment Science and Technology Major Project (No. 2012ZX07102001-003), Fundamental Research Funds for the Central Universities (No. 106112016CDJXY210008), Foundation and Frontier Research General Project of Chongqing, China (No. cstc2017jcyjAX0206) and Chongqing University Postgraduates Innovation Project (No. CYB15039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan-juan Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, B., Yao, Jj., Han, Cx. et al. Degradation of ofloxacin by UVA-LED/TiO2 nanotube arrays photocatalytic fuel cells. Chem. Pap. 72, 359–368 (2018). https://doi.org/10.1007/s11696-017-0285-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0285-6

Keywords

Navigation