Skip to main content
Log in

Fischer–Tropsch synthesis: evaluation of Gd and Ru promoters effect on Co/γ-Al2O3 catalyst at different conditions

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this study, the effect of Ru and Gd promoters on 15Co/\(\gamma\)-Al2O3 catalyst in the Fischer–Tropsch synthesis is investigated. The catalysts were synthesized by dry impregnation method and characterized by XRD, adsorption/desorption of nitrogen, TPR, TEM, ICP and XPS analyses. Activity and selectivity of the catalysts were examined in a fixed bed reactor at 210–230 °C with a H2/CO ratio of 2 and atmospheric pressure. The results showed that the Ru-promoted catalyst has the highest activity and methane selectivity which reduce the chain growth probability. The Gd-promoted catalyst was shown smaller particle size and higher dispersion of cobalt particles in compared with unpromoted catalyst. The smaller particles have more interaction and thus show the lower catalyst reducibility. The presence of Gd in the catalyst cause higher chain growth probability compared to the unpromoted one. The Ru–Gd-promoted catalysts were shown a synergic effect in the catalyst reducibility. Based on the screening of the catalysts in the atmospheric pressure; the unpromoted, 0.1Ru/15Co/Al2O3, and 0.1Ru1Gd/15Co/Al2O3 catalysts were selected to test at high pressure conditions, which the 0.1Ru1Gd/15Co catalyst showed the highest C5 + selectivity (75%) compared with the 0.1Ru/15Co/Al2O3 and the unpromoted one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atashi H, Mansouri M, Hosseini SH et al (2012) Intrinsic kinetics of the Fischer–Tropsch synthesis over an impregnated cobalt–potassium catalyst. Korean J Chem Eng 29:304–309. doi:10.1007/s11814-011-0189-z

    Article  CAS  Google Scholar 

  • Bartholomew CH, Farrauto RJ (2006) Fundamentals of industrial catalytic processes, 2nd edn. Wiley, New Jersey

    Google Scholar 

  • Bartholomew CH, Reuel RC (1985) Cobalt–support interactions: their effects on adsorption and carbon monoxide hydrogenation activity and selectivity properties. Ind Eng Chem Prod Res Dev 24:56–61. doi:10.1021/i300017a011

    Article  CAS  Google Scholar 

  • Bergwerff JA, Lysova AA, Espinosa-Alonso L et al (2008) Monitoring transport phenomena of paramagnetic metal–ion complexes inside catalyst bodies with magnetic resonance imaging. Chem Eur J 14:2363–2374. doi:10.1002/chem.200700990

    Article  CAS  Google Scholar 

  • Borghard WG, Bennett CO (1979) Evaluation of commercial catalysts for the Fischer–Tropsch reaction. Ind Eng Chem Prod Res Dev 18:18–26. doi:10.1021/i360069a005

    Article  CAS  Google Scholar 

  • Can F, Le Valant A, Bion N et al (2008) New active and selective Rh − REOx − Al2O3 catalysts for ethanol steam reforming. J Phys Chem C 112:14145–14153. doi:10.1021/jp801954s

    Article  CAS  Google Scholar 

  • Chabot G, Guilet R, Cognet P, Gourdon C (2015) A mathematical modeling of catalytic milli-fixed bed reactor for Fischer–Tropsch synthesis: influence of tube diameter on Fischer Tropsch selectivity and thermal behavior. Chem Eng Sci 127:72–83. doi:10.1016/j.ces.2015.01.015

    Article  CAS  Google Scholar 

  • Chu W, Chernavskii PA, Gengembre L et al (2007) Cobalt species in promoted cobalt alumina-supported Fischer–Tropsch catalysts. J Catal 252:215–230. doi:10.1016/j.jcat.2007.09.018

    Article  CAS  Google Scholar 

  • Dai X, Yu C, Li R et al (2006) Role of CeO2 promoter in Co/SiO2 catalyst for Fischer–Tropsch synthesis. Chin J Catal 27:904–910. doi:10.1016/S1872-2067(06)60047-8

    Article  CAS  Google Scholar 

  • Das TK, Jacobs G, Patterson PM et al (2003) Fischer–Tropsch synthesis: characterization and catalytic properties of rhenium promoted cobalt alumina catalysts. Fuel 82:805–815. doi:10.1016/S0016-2361(02)00361-7

    Article  CAS  Google Scholar 

  • Dinse A, Aigner M, Ulbrich M et al (2012) Effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer–Tropsch synthesis. J Catal 288:104–114. doi:10.1016/j.jcat.2012.01.008

    Article  CAS  Google Scholar 

  • Dutta P, Elbashir NO, Manivannan A et al (2004) Characterization of Fischer–Tropsch cobalt-based catalytic systems (Co/SiO2 and Co/Al2O3) by X-ray diffraction and magnetic measurements. Catal Lett 98:203–210. doi:10.1007/s10562-004-8681-2

    Article  CAS  Google Scholar 

  • Fogler HS (1999) Elements of chemical reaction engineering, 3rd edn. Prentice-Hall Inc, New Delhi

    Google Scholar 

  • Gnanamani MK, Jacobs G, Shafer WD, Davis BH (2013) Fischer–Tropsch synthesis: activity of metallic phases of cobalt supported on silica. Catal Today 215:13–17. doi:10.1016/j.cattod.2013.03.004

    Article  CAS  Google Scholar 

  • He H, Dai H, Au C (2004) Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE = Ce, Pr) solid solutions. Catal Today 90:245–254. doi:10.1016/j.cattod.2004.04.033

    Article  CAS  Google Scholar 

  • He L, Zhang Y, Fan M (2015) Development of composited rare-earth promoted cobalt-based Fischer–Tropsch synthesis catalysts with high activity and selectivity. Appl Catal A 505:276–283. doi:10.1016/j.apcata.2015.07.041

    Article  CAS  Google Scholar 

  • Hong J, Marceau E, Khodakov AY et al (2015) Speciation of ruthenium as a reduction promoter of silica-supported co catalysts: a time-resolved in situ XAS investigation. ACS Catal 5:1273–1282. doi:10.1021/cs501799p

    Article  CAS  Google Scholar 

  • Hosseini SA, Taeb A, Feyzi F, Yaripour F (2004) Fischer–Tropsch synthesis over Ru promoted Co/γ-Al2O3 catalysts in a CSTR. Catal Commun 5:137–143. doi:10.1016/j.catcom.2003.11.013

    Article  CAS  Google Scholar 

  • Huang J, Qian W, Zhang H, Ying W (2016) Investigation on Fischer–Tropsch synthesis over cobalt–gadolinium catalyst. World Acad Sci Eng Technol Int J Chem Mol Nucl Mater Metall Eng 10(8):1042–1045

    Google Scholar 

  • Huber GW, Butala SJM, Lee ML, Bartholomew CH (2001) Gd promotion of Co/SiO2 Fischer–Tropsch synthesis catalysts. Catal Lett 74:45–48. doi:10.1023/A:1016613627261

    Article  CAS  Google Scholar 

  • Iglesia E (1997) Design, synthesis, and use of cobalt-based Fischer–Tropsch synthesis catalysts. Appl Catal A 161:59–78. doi:10.1016/S0926-860X(97)00186-5

    Article  CAS  Google Scholar 

  • Iglesia E, Soled SL, Fiato RA (1992) Fischer–Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. J Catal 137:212–224. doi:10.1016/0021-9517(92)90150-G

    Article  CAS  Google Scholar 

  • Iglesia E, Soled SL, Fiato RA, Via GH (1993) Bimetallic synergy in cobalt ruthenium Fischer–Tropsch synthesis catalysts. J Catal 143:345–368. doi:10.1006/jcat.1993.1281

    Article  CAS  Google Scholar 

  • Jacobs G, Das TK, Zhang Y et al (2002) Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A 233:263–281. doi:10.1016/S0926-860X(02)00195-3

    Article  CAS  Google Scholar 

  • Jacobs G, Ma W, Gao P et al (2012) Fischer–Tropsch synthesis: differences observed in local atomic structure and selectivity with Pd compared to typical promoters (Pt, Re, Ru) of Co/Al2O3 catalysts. Top Catal 55:811–817. doi:10.1007/s11244-012-9856-5

    Article  CAS  Google Scholar 

  • Jeon J-K, Kim C-J, Park Y-K, Ihm S-K (2004) Catalytic properties of potassium-or lanthanum-promoted Co/γ-Al2O3 catalysts in carbon monoxide hydrogenation. Korean J Chem Eng 21:365–369. doi:10.1007/BF02705421

    Article  CAS  Google Scholar 

  • Jongsomjit B, Panpranot J, Goodwin JGJ (2001) Co-support compound formation in alumina-supported cobalt catalysts. J Catal 204:98–109. doi:10.1006/jcat.2001.3387

    Article  CAS  Google Scholar 

  • Jongsomjit B, Panpranot J, Goodwin JGJ (2003) Effect of zirconia-modified alumina on the properties of Co/γ-Al2O3 catalysts. J Catal 215:66–77. doi:10.1016/S0021-9517(02)00102-1

    Article  CAS  Google Scholar 

  • Khodakov AY, Griboval-Constan A, Bechara R, Villain F (2001) Pore-size control of cobalt dispersion and reducibility in mesoporous silicas. J Phys Chem B 105:9805–9811. doi:10.1021/JP011989U

    Article  CAS  Google Scholar 

  • Khodakov AY, Bechara R, Griboval-Constant A (2003) Fischer–Tropsch synthesis over silica supported cobalt catalysts: mesoporous structure versus cobalt surface density. Appl Catal A 254:273–288. doi:10.1016/S0926-860X(03)00489-7

    Article  CAS  Google Scholar 

  • Kogelbauer A, Goodwin JGJ, Oukaci R (1996) Ruthenium promotion of Co/Al2O3 Fischer–Tropsch catalysts. J Catal 160:125–133. doi:10.1006/jcat.1996.0130

    Article  CAS  Google Scholar 

  • Li YP, Wang TJ, Wu CZ et al (2009) Effect of Ru addition to Co/SiO2/HZSM-5 catalysts on Fischer–Tropsch synthesis of gasoline-range hydrocarbons. Catal Commun 10:1868–1874. doi:10.1016/j.catcom.2009.06.021

    Article  CAS  Google Scholar 

  • Ma C, Yao N, Han Q, Li X (2012a) Synthesis and application of γ-Al2O3 supported CoRu-based Fischer–Tropsch catalyst. Chem Eng J 191:534–540. doi:10.1016/j.cej.2012.03.024

    Article  CAS  Google Scholar 

  • Ma W, Jacobs G, Keogh RA et al (2012b) Fischer–Tropsch synthesis: effect of Pd, Pt, Re, and Ru noble metal promoters on the activity and selectivity of a 25%Co/Al2O3 catalyst. Appl Catal A 437–438:1–9. doi:10.1016/j.apcata.2012.05.037

    Article  Google Scholar 

  • Ma W et al (2014) Fischer–Tropsch synthesis: pore size and Zr promotional effects on the activity and selectivity of 25%Co/Al2O3 catalysts. Appl Catal A 475:314–324. doi:10.1016/j.apcata.2014.01.016

    Article  CAS  Google Scholar 

  • Madikizela-Mnqanqeni NN, Coville NJ (2004) Surface and reactor study of the effect of zinc on titania-supported Fischer–Tropsch cobalt catalysts. Appl Catal A 272:339–346. doi:10.1016/j.apcata.2004.06.006

    Article  CAS  Google Scholar 

  • Marriott J (2004) Fischer–Tropsch technology. In: Steynberg AP (ed) Dry M. Elsevier, Sasolburg

    Google Scholar 

  • Menezes PW, Indra A, Sahraie NR et al (2015) Cobalt–manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions. Chemsuschem 8:164–171. doi:10.1002/cssc.201402699

    Article  CAS  Google Scholar 

  • Morales BYF, Weckhuysen BM (2006) Promotion effects in Co-based Fischer–Tropsch catalysis. In: Spivey JJ, Dooley KM (eds) catalysis. Royal Society of Chemistry, London, pp 1–40. doi:10.1039/9781847555229-00001

    Google Scholar 

  • Morales F, Desmit E, Degroot F et al (2007) Effects of manganese oxide promoter on the CO and H2 adsorption properties of titania-supported cobalt Fischer–Tropsch catalysts. J Catal 246:91–99. doi:10.1016/j.jcat.2006.11.014

    Article  CAS  Google Scholar 

  • Mori T, Miyamoto A, Takahashi N et al (1986) Promotion effects of vanadium, niobium, molybdenum, tungsten, and rhenium oxides on surface reactions in the CO hydrogenation over Ru/Al2O3 catalyst. J Phys Chem 90:5197–5201. doi:10.1021/j100412a061

    Article  CAS  Google Scholar 

  • Mosayebi A, Mehrpouya MA, Abedini R (2016) The development of new comprehensive kinetic modeling for Fischer–Tropsch synthesis process over Co–Ru/γ-Al2O3 nano-catalyst in a fixed-bed reactor. Chem Eng J 286:416–426. doi:10.1016/j.cej.2015.10.087

    Article  CAS  Google Scholar 

  • Mousavi S, Zamaniyan A, Irani M, Rashidzadeh M (2015) Generalized kinetic model for iron and cobalt based Fischer–Tropsch synthesis catalysts: review and model evaluation. Appl Catal A 506:57–66. doi:10.1016/j.apcata.2015.08.020

    Article  CAS  Google Scholar 

  • Mousavi Sh, Zamaniyan A, Irani M, Rashidzadeh M (2016) Statistical investigation of macro kinetics for iron and cobalt based Fischer–Tropsch synthesis: mechanistic and kinetic implications. J Nat Gas Sci Eng 34:1333–1346. doi:10.1016/j.jngse.2016.07.068

    Article  CAS  Google Scholar 

  • Outi A, Rautavuoma I, van der Baan HS (1981) Kinetics and mechanism of the Fischer Tropsch hydrocarbon synthesis on a cobalt. Appl Catal 1:247–272. doi:10.1016/0166-9834(81)80031-0

    Article  CAS  Google Scholar 

  • Pannell RB, Kibby CL, Kobylinski TP (1981) A steady-state study of Fischer–Tropsch product distributions over cobalt, iron and ruthenium. Stud Surf Sci Catal 7:447–459. doi:10.1016/S0167-2991(09)60290-1

    Article  CAS  Google Scholar 

  • Park JY, Lee YJ, Karandikar PR et al (2011) Ru promoted cobalt catalyst on γ-Al2O3 support: influence of pre-synthesized nanoparticles on Fischer–Tropsch reaction. J Mol Catal A Chem 344:153–160. doi:10.1016/j.molcata.2011.05.022

    Article  CAS  Google Scholar 

  • Parnian MJ, Taheri Najafabadi A, Mortazavi Y et al (2014) Ru promoted cobalt catalyst on γ-Al2O3: influence of different catalyst preparation method and Ru loadings on Fischer–Tropsch reaction and kinetics. Appl Surf Sci 313:183–195. doi:10.1016/j.apsusc.2014.05.183

    Article  CAS  Google Scholar 

  • Pendyala VRR, Jacobs G, Ma W et al (2014) Fischer–Tropsch synthesis: effect of catalyst particle (sieve) size range on activity, selectivity, and aging of a Pt promoted Co/Al2O3 catalyst. Chem Eng J 249:279–284. doi:10.1016/j.cej.2014.03.100

    Article  CAS  Google Scholar 

  • Sachtler WMH, Ichikawa M (1986) Catalytic site requirements for elementary steps in syngas conversion to oxygenates over promoted rhodium. J Phys Chem 90:4752–4758. doi:10.1021/j100411a009

    Article  CAS  Google Scholar 

  • Salazar-Villalpando MD, Berry DA, Cugini A (2010) Role of lattice oxygen in the partial oxidation of methane over Rh/zirconia-doped ceria. Isotopic studies. Int J Hydrogen Energy 35:1998–2003. doi:10.1016/j.ijhydene.2009.12.023

    Article  CAS  Google Scholar 

  • Sari A (2014) Investigation of the supercritical conditions for Fischer–Tropsch reaction over an industrial Co–Ru/γ-Al2O3 catalyst. Chem Eng J 244:317–326. doi:10.1016/j.cej.2014.01.086

    Article  CAS  Google Scholar 

  • Sasikala R, Varma S, Gupta NM, Kulshreshtha SK (2001) Reduction behavior of Ce-Y mixed oxides. J Mater Sci Lett 20:1131–1133. doi:10.1023/A:1010948508523

    Article  CAS  Google Scholar 

  • Schanke D, Vada S, Blekkan EA, Hilmen AM, Hoff A, Holmen A (1995) Study of Pt-promoted cobalt CO hydrogenation catalysts. J Catal 156:85–95. doi:10.1006/jcat.1995.1234

    Article  CAS  Google Scholar 

  • Schweicher J, Bundhoo A, Kruse N (2012) Hydrocarbon chain lengthening in catalytic CO hydrogenation: evidence for a CO-insertion mechanism. J Am Chem Soc 134:16135–16138. doi:10.1021/ja3068484

    Article  CAS  Google Scholar 

  • Scofield JH (1976) Hartree–Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom 8:129–137. doi:10.1016/0368-2048(76)80015-1

    Article  CAS  Google Scholar 

  • Shi H, Li Q, Dai X et al (2004) CeO2-promotion of Co/SiO2 Fischer–Tropsch synthesis catalyst. Stud Surf Sci Catal 147:313–318. doi:10.1016/S0167-2991(04)80070-3

    Article  CAS  Google Scholar 

  • Shimura K, Miyazawa T, Hanaoka T, Hirata S (2015) Fischer–Tropsch synthesis over alumina supported cobalt catalyst: effect of promoter addition. Appl Catal A 494:1–11. doi:10.1016/j.apcata.2015.01.017

    Article  CAS  Google Scholar 

  • Song SH, Lee SB, Bae JW et al (2008) Influence of Ru segregation on the activity of Ru–Co/γ-Al2O3 during FT synthesis: a comparison with that of Ru–Co/SiO2 catalysts. Catal Commun 9:2282–2286. doi:10.1016/j.catcom.2008.05.023

    Article  CAS  Google Scholar 

  • Trépanier M, Tavasoli A, Dalai AK, Abatzoglou N (2009) Co, Ru and K loadings effects on the activity and selectivity of carbon nanotubes supported cobalt catalyst in Fischer–Tropsch synthesis. Appl Catal A 353:193–202. doi:10.1016/j.apcata.2008.10.061

    Article  Google Scholar 

  • Van Berge PJ (1994) Fischer–Tropsch studies in the slurry phase favouring wax production. Dissertation, Potchefstroomse Universiteit vir Christelike Hoer

  • Van de Loosdrecht J, Botes F, Ciobica I, et al (2013) Fischer–Tropsch synthesis: catalysts and chemistry. In: Comprehensive inorganic chemistry II: from elements to applications. Elsevier Ltd, pp 525–557. doi:10.1016/B978-0-08-097774-4.00729-4

  • Van der Laan GP (1999) Kinetics, selectivity and scale up of the Fischer–Tropsch synthesis. Dissertation, University of Groningen

  • Xu D, Li W, Duan H et al (2005) Reaction performance and characterization of Co/Al2O3 Fischer–Tropsch catalysts promoted with Pt, Pd and Ru. Catal Lett 102:229–235. doi:10.1007/s10562-005-5861-7

    Article  CAS  Google Scholar 

  • Zamani Y, Bakavoli M, Rahimizadeh M et al (2012) Synergetic effect of La and Ba promoters on nanostructured iron catalyst in Fischer–Tropsch synthesis. Chin J Catal 33:1119–1124. doi:10.1016/S1872-2067(11)60396-3

    Article  CAS  Google Scholar 

  • Zeng S, Du Y, Su H, Zhang Y (2011) Promotion effect of single or mixed rare earths on cobalt-based catalysts for Fischer–Tropsch synthesis. Catal Commun 13:6–9. doi:10.1016/j.catcom.2011.06.009

    Article  CAS  Google Scholar 

  • Zhang J, Chen J, Ren J, Sun Y (2003) Chemical treatment of γ-Al2O3 and its influence on the properties of Co-based catalysts for Fischer–Tropsch synthesis. Appl Catal A 243:121–133. doi:10.1016/S0926-860X(02)00541-0

    Article  CAS  Google Scholar 

  • Zhang Y, Xiong H, Liew K, Li J (2005) Effect of magnesia on alumina-supported cobalt Fischer–Tropsch synthesis catalysts. J Mol Catal A: Chem 237:172–181. doi:10.1016/j.molcata.2005.04.057

    Article  CAS  Google Scholar 

  • Zohdi-Fasaei H, Atashi H, Farshchi Tabrizi F, Mirzaei AA (2016) Effects of mass transfer on Fischer–Tropsch kinetics over mesoporous silica-supported CoMnCe nano catalysts in a fixed-bed reactor. J Nat Gas Sci Eng 32:262–272. doi:10.1016/j.jngse.2016.03.090

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Institute of Petroleum Industry, Gas Research Division, Tehran, Iran is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Bahadoran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahadoran, F., Moradian, A., Shirazi, L. et al. Fischer–Tropsch synthesis: evaluation of Gd and Ru promoters effect on Co/γ-Al2O3 catalyst at different conditions. Chem. Pap. 72, 309–325 (2018). https://doi.org/10.1007/s11696-017-0281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0281-x

Keywords

Navigation