Skip to main content
Log in

Key factor affecting the basicity of mesoporous silicas MCM-41: effect of surfactant extraction time and Si/Al ratio

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Mesoporous silica Si-MCM-41 was prepared by hydrothermal method using TEOS and CTAB as the source of silica and structuring agent, respectively. The surface of the as-synthesized material was treated using HCl/ETOH solvent to remove the CTA surfactant instead of using the calcination. Characterization of the catalysts was performed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), nitrogen sorption at 77 K, scanning and transmission electronic microscopy (SEM, TEM), and thermogravimetric analysis TGA. The catalytic properties of the prepared materials in the condensation of acetophenone with ethyl cyanoacetate were studied. The effects of the catalyst type, Si/Al ratio, reaction kinetics, and reaction temperature were also investigated to find an optimal parameter. The results show that an interesting yield was obtained (about 96%) in a short reaction time; it is found that the yields of products depend not only on the amount of surfactant inside the mesopores but also on the Si/Al ratio. The catalyst reuse shows that this catalyst can be used up to five cycles, and at temperatures higher than 50 °C, the yield of products decreases due to the slight destruction of the catalyst as confirmed by the XRD analysis. Based on the results obtained, a possible mechanism of the condensation reaction of acetophenone was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  • Ariapad A, Zanjanchi MA, Arvand M (2012) Efficient removal of anionic surfactant using partial template-containing MCM-41. Desalination 284:142–149. doi:10.1016/j.desal.2011.08.048

    Article  CAS  Google Scholar 

  • Barrett EP, Joyner LG, Halenda PH (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380. doi:10.1021/ja01145a126

    Article  CAS  Google Scholar 

  • Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, Mc Cullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular-sieves. Prepared with liquid-crystal templates. J Am Chem Soc 114:10834–10843. doi:10.1021/ja00053a020

    Article  CAS  Google Scholar 

  • Berquier JM, Teyssedre L, Jacquiod C (1998) Synthesis of transparent mesoporous and mesostructured thin silica films. J Sol-Gel Sci Technol 13:739–742. doi:10.1023/A:1008609525830

    Article  Google Scholar 

  • Boukoussa B, Sebih F, Hamacha R, Bellahouel S, Derdour A, Bengueddach A (2015a) Regioselective acylation of methyl-a-d-glucopyranoside with different acylating agents catalysed by micro/mesoporous materials. Res Chem Intermed 41:2221–2233. doi:10.1007/s11164-013-1340-8

    Article  CAS  Google Scholar 

  • Boukoussa B, Aouad N, Hamacha R, Bengueddach A (2015b) Key factor affecting the structural and textural properties of ZSM-5/MCM-41 composite. J Phys Chem Solids 78:78–83. doi:10.1016/j.jpcs.2014.11.006

    Article  CAS  Google Scholar 

  • Boukoussa B, Zeghada S, Bentabed Ababsa G, Hamacha R, Derdour A, Bengueddach A, Mongin F (2015c) Catalytic behavior of surfactant-containing-MCM-41 mesoporous materials for cycloaddition of 4-nitrophenyl azide. Appl Catal A 489:131–139. doi:10.1016/j.apcata.2014.10.022

    Article  CAS  Google Scholar 

  • Boukoussa B, Hamacha R, Morsli A, Bengueddach A (2017) Adsorption of yellow dye on calcined or uncalcined Al-MCM-41 mesoporous materials. Arabian J Chem 10:S2160–S2169. doi:10.1016/j.arabjc.2013.07.049

    Article  CAS  Google Scholar 

  • Brahmi L, Ali-Dahmane T, Hamacha R, Hacini S (2016) Catalytic performance of Al-MCM-41 catalyst for the allylation of aromatic aldehydes with allyltrimethylsilane: comparison with TiCl4 as Lewis acid. J Mol Catal A Chem 423:31–40. doi:10.1016/j.molcata.2016.06.004

    Article  CAS  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. doi:10.1021/ja01269a023

    Article  CAS  Google Scholar 

  • Burgoyne RA, Meijboom R (2013) Knoevenagel condensation reactions catalysed by metal-organic frameworks. Catal Lett 143:563–571. doi:10.1007/s10562-013-0995-5

    Article  CAS  Google Scholar 

  • Chikh K, Boukoussa B, Bouhadjar L, Bencheikh M, Hamacha R, Meghabar R, Belbachir M, Bengueddach A (2015) Polymerization of pyrrole with 4-hydroxybenzaldehyde over Al-MCM-41 mesoporous aluminosilicate materials. Res Chem Intermed 41:6485–6496. doi:10.1007/s11164-014-1755-x

    Article  CAS  Google Scholar 

  • Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821. doi:10.1038/nature00785

    Article  CAS  Google Scholar 

  • Deepak BN, Rana S, Parida K, Bhanage BM (2014) Amine functionalized MCM-41 as a green, efficient, and heterogeneous catalyst for the regioselective synthesis of 5-aryl-2-oxazolidinones, from CO2 and aziridines. Appl Catal A 469:340–349

    Article  Google Scholar 

  • Gholami Z, Abdullah AZ, Lee KT (2014) Heterogeneously catalyzed etherification of glycerol to diglycerol over calcium–lanthanum oxide supported on MCM-41: a heterogeneous basic catalyst. Appl Catal A 479:76–86. doi:10.1016/j.apcata.2014.04.024

    Article  CAS  Google Scholar 

  • Guangcai Z, Tong Z, Xiongfu Z, King Lun Y (2015) Continuous flow ZIF-8/NaA composite membrane microreactor for efficient Knoevenagel condensation. Catal Commun 68:93–96. doi:10.1016/j.catcom.2015.05.008

    Article  Google Scholar 

  • Huang J, Ding S, Xiao W, Peng Y, Deng S, Zhang N (2015) 3-Aminopropyl-triethoxysilane functionalized graphene oxide: a highly efficient and recyclable catalyst for Knoevenagel condensation. Catal Lett 145:1000–1007. doi:10.1007/s10562-014-1461-8

    Article  CAS  Google Scholar 

  • Izquierdo-Barba I, Sánchez-Salcedo S, Colilla M, Feito MJ, Ramírez-Santillán C, Portolés MT, Vallet-Regí M (2011) Inhibition of bacterial adhesion on biocompatible zwitterionic SBA-15 mesoporous materials. Acta Biomater 7:2977–2985. doi:10.1016/j.actbio.2011.03.005

    Article  CAS  Google Scholar 

  • Jlalia I, Gallier F, Brodie-Linder N, Uziel J, Augé J, Lubin-Germain N (2014) Copper(II) SBA-15: a reusable catalyst for azide–alkyne cycloaddition. J Mol Catal A: Chem 393:56–61. doi:10.1016/j.molcata.2014.06.003

    Article  CAS  Google Scholar 

  • Jun X, Lang C, Au C-T, Shuang-Feng Y (2015) Synthesis of KOH/SnO2 solid superbases for catalytic Knoevenagel condensation. Catal Commun 66:30–33. doi:10.1016/j.catcom.2015.03.008

    Article  Google Scholar 

  • Keita I, Keita M, Takayuki T, Masato M (2011) ca-containing mesoporous silica as a solid base catalyst for the Knoevenagel condensation reaction. Catal Lett 141:877–881. doi:10.1007/s1056-011-0613-3

    Article  Google Scholar 

  • Kibou Z, Cheikh N, Villemin D, Choukchou-Braham N, Mostefa-Kara B, Benabdallah M (2011) A simple and efficient procedure for a 2-pyridones synthesis under solvent-free conditions. Int J Org Chem 1:242–249. doi:10.4236/ijoc.2011.14035

    Article  CAS  Google Scholar 

  • Knoevenagel E (1898) Condensationen zwischen Malonester und Aldehyden unter dem Einfluss von Ammoniak und organischen Aminen. Berichte 31:2585–2596. doi:10.1002/cber.18980310307

    CAS  Google Scholar 

  • Koller H, Lobo RF, Burkett SL, Davis ME (1995) SiO–…HOSi hydrogen bonds in as-synthesized high-silica zeolites. J Phys Chem 99:12588–12596. doi:10.1021/j100033a036

    Article  CAS  Google Scholar 

  • Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712. doi:10.1038/359710a0

    Article  CAS  Google Scholar 

  • Kubota Y, Ikeya H, Sugi Y, Yamada T, Tatsumi T (2006) Organic–inorganic hybrid catalysts based on ordered porous structures for Michael reaction. J Mol Catal A: Chem 249:181–190. doi:10.1016/j.molcata.2006.01.015

    Article  CAS  Google Scholar 

  • Lixin X, Ye Z, Cui Q, Zhiyong G, Mercier L (2011) Surface-initiated catalytic ethylene polymerization within nano-channels of ordered mesoporous silicas for synthesis of hybrid silica composites containing covalently tethered polyethylene. Polymer 52:5961–5974. doi:10.1016/j.polymer.2011.11.011

    Article  Google Scholar 

  • Lu L, Kejing Q, Xu J, Fusheng L, Shiwei L, Yu S, Congxia X, Xiaoping G (2014) Preparation of basic mesoporous molecular sieves K2O/Mg-MCM-41 and its catalytic performance on the cracking of soybean oils. J Anal Appl Pyrol 110:313–317. doi:10.1016/j.jaap.2014.09.019

    Article  Google Scholar 

  • Martins L, Bonagamba TJ, de Azevedo ER, Bargiela P, Di Cardoso (2006) Surfactant containing Si-MCM-41: an efficient basic catalyst for the Knoevenagel condensation. Appl Catal A 312:77–85. doi:10.1016/j.apcata.2006.06.035

    Article  CAS  Google Scholar 

  • Martins L, Hölderich W, Hammer P, Cardoso D (2010) Preparation of different basic Si–MCM-41 catalysts and application in the Knoevenagel and Claisen-Schmidt condensation reactions. J Catal 271:220–227. doi:10.1016/j.jcat.2010.01.015

    Article  CAS  Google Scholar 

  • Morsli A, Benhamou A, Basly JP, Baudu M, Derriche Z (2015) Mesoporous silicas: improving the adsorption efficiency of phenolic compounds by the removal of amino group from functionalized silicas. RSC Adv 5:41631–41638. doi:10.1039/C5RA03066H

    Article  CAS  Google Scholar 

  • Oliveira AC, Martins L, Cardoso D (2009) Basic catalytic properties of as-synthesized molecular sieves. Microporous Mesoporous Mater 120:206–213. doi:10.1016/j.micromeso.2008.10.033

    Article  CAS  Google Scholar 

  • Ouargli-Saker R, Bouazizi N, Boukoussa B, Barrimo D, Paola-Nunes-Beltrao A, Azzouz A (2017) Metal-loaded SBA-16-like silica—correlation between basicity and affinity towards hydrogen. Appl Surf Sci 411:476–486. doi:10.1016/j.apsusc.2017.03.165

    Article  CAS  Google Scholar 

  • Parangi TF, Patel RM, Chudasama UV (2014) Synthesis and characterization of mesoporous Si-MCM-41 materials and their application as solid acid catalysts in some esterification reactions. Bull Mater Sci 37:609–615. doi:10.1007/s12034-014-0709-7

    Article  CAS  Google Scholar 

  • Parida KM, Dharitri R (2009) Amine functionalized MCM-41: an active and reusable catalyst for Knoevenagel condensation reaction. J Mol Catal A Chem 310:93–100. doi:10.1016/j.molcata.2009.06.001

    Article  CAS  Google Scholar 

  • Pauly TR, Liu Y, Pinnavaia TJ, Billinge SJL, Rieker TP (1999) Textural mesoporosity and the catalytic activity of mesoporous molecular sieves with wormhole framework structures. J Am Chem Soc 121:8835–8842. doi:10.1021/ja991400t

    Article  CAS  Google Scholar 

  • Pirouzmand M, Nikzad-kojanag B, Seyed-Rasulzade SK (2015) Surfactant containing Ca/MCM-41 as a highly active, green and reusable catalyst for the trans esterification of canola oil. Catal Commun 69:196–201. doi:10.1016/j.catcom.2015.06.021

    Article  CAS  Google Scholar 

  • Prajpati D, Lekhok KC, Sandhu JS, Ghosh AC (1996) Lithium bromide as a new catalyst for carbon–carbon bond formation in the solid state. J Chem Soc Pekin Trans 1:959. doi:10.1039/P19960000959

    Article  Google Scholar 

  • Ranucci CR, Colpini LMS, Monteiro MR, Kothe V, Gasparrini LJ, Alves HJ (2015) Preparation, characterization and stability of KF/Si-MCM-41 basic catalysts for application in soybean oil transesterification with methanol. J Environ Chem Eng 3:703–707. doi:10.1016/j.jmst.2016.08.025

    Article  CAS  Google Scholar 

  • Rao PS, Venkataratnam RV (1991) Zinc chloride as a new catalyst for Knoevenagel condensation. Tetrahedron Lett 32:5821–5822. doi:10.1016/S0040-4039(00)93564-0

    Article  CAS  Google Scholar 

  • Sekkiou H, Boukoussa B, Ghezini R, Khenchoul Z, Ouali A, Hamacha R, Bengueddach A (2016) Enhanced hydrogen storage capacity of copper containing mesoporous silicas prepared using different methods. Mater Res Express 3:085501. doi:10.1088/2053-1591/3/8/085501

    Article  Google Scholar 

  • Semsarzadeh MA, Amiri S, Azadeh M (2012) Controlled radical polymerization of vinyl acetate in presence of mesoporous silica supported TiCl heterogeneous catalyst. Bull Mater Sci 35:867–874. doi:10.1007/s12034-012-0361-z

    Article  CAS  Google Scholar 

  • Srivastava R, Srinivas D, Ratnasamy P (2006) Syntheses of polycarbonate and polyurethane precursors utilizing CO2 over highly efficient, solid as-synthesized MCM-41 catalyst. Tetrahedron Lett 47:4213–4217. doi:10.1016/j.tetlet.2006.04.057

    Article  CAS  Google Scholar 

  • Sunghwan P, Joona B, Jungkyu C, Sang Hyup L, Jung-Hyun L, Jong Suk L (2014) 3-Dimensionally disordered mesoporous silica (DMS)-containing mixed matrix membranes for CO2 and non-CO2 greenhouse gas separations. Sep Purif Technol 136:286–295. doi:10.1016/j.seppur.2014.09.016

    Article  Google Scholar 

  • Talha Z, Bachir C, Ziri S, Bellahouel S, Bengueddach A, Villièras F, Pelletier M, Weidler PG, Hamacha R (2017) Al-rich ordered mesoporous silica SBA-15 materials: synthesis. Surf Charact Acid Prop. doi:10.1007/s10562-017-2103-8

    Google Scholar 

  • Terrab I, Ouargli R, Boukoussa B, Ghomari K, Hamacha R, Roy R, Azzouz A, Bengueddach A (2017) Assessment of the intrinsic interactions of mesoporous silica with carbon dioxide. Res Chem Intermed 43:3775–3786. doi:10.1007/s11164-016-2846-7

    Article  CAS  Google Scholar 

  • Venkatesan C, Chidambaram M, Singh AP (2005) 3-Aminopropyltriethoxysilyl functionalized Na-Al-MCM-41 solid base catalyst for selective preparation of 2-phenylpropionitrile from phenylacetonitrile. Appl Catal A 292:344–353. doi:10.1016/j.apcata.2005.06.013

    Article  CAS  Google Scholar 

  • Wach A, Drozdek M, Dudek B, Szneler E, Kuśtrowski P (2015) Control of amine functionality distribution in polyvinylamine/SBA-15 hybrid catalysts for Knoevenagel condensation. Catal Commun 64:52–57. doi:10.1016/j.catcom.2015.02.002

    Article  CAS  Google Scholar 

  • Wu S, Song K, Guan J, Kan Q (2011) Synthesis and characterization of super-microporous material with enhanced hydrothermal stability. Bull Mater Sci 34:979–983. doi:10.1007/s12034-011-0225-y

    Article  CAS  Google Scholar 

  • Zhu F, Sun Xiaojun, Lou Fengwen, An Litao, Zhao Pusu (2015) Facile one-pot synthesis of amine-functionalized mesoporous silica nanospheres for water-medium Knoevenagel reaction under microwave irradiation. Catal Lett 145:1072–1079. doi:10.1007/s10562-015-1484-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouhadjar Boukoussa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukoussa, B., Kibou, Z., Abid, Z. et al. Key factor affecting the basicity of mesoporous silicas MCM-41: effect of surfactant extraction time and Si/Al ratio. Chem. Pap. 72, 289–299 (2018). https://doi.org/10.1007/s11696-017-0279-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0279-4

Keywords

Navigation