Skip to main content
Log in

A novel and convenient preparation of antibacterial polyacrylonitrile nanofibers via post-modification using nitrile click chemistry and electrospinning

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

An efficient, novel and convenient method for the synthesis of modified polyacrylonitrile (PAN) with antibacterial property is reported. The modification of PAN was prepared by a nitrile click chemistry reaction with sodium azide (NaN3) and silver nitrate (AgNO3) as catalyst to yield antibacterial polymeric materials with 5-vinyltetrazole units. The results showed that 5-vinyltetrazole units had coordinated with silver ion (Ag+). Through the electrostatic spinning technology, the post-modification PAN nanofibers (PAN–Ag+ nanofibers) were prepared and the fibers were tested for their antimicrobial properties by the bacterial infection experiment. Afterwards, the antibacterial and stable performance of different proportions of silver ions in PAN nanofibers has been compared. The PAN–Ag+ nanofibers are characterized for mechanical and thermomechanical properties, structural analysis, appearance characteristics, as well as the antibacterial properties. And the nanofibers exhibit marvelous chemical stability according to the thermogravimetric analysis. When at 800 °C, the PAN decomposed about 60%, while the decomposition of the PAN–Ag+s was 40%. Based on the bacterial infection experiment, PAN–Ag+ nanofibers’ antibacterial properties were stronger with the increase of silver ions, such as the number of bacteria clone was smaller and the bacteriostatic ring was larger. Hence, with combination of silver ions, the final polymers show strong antimicrobial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allen MH Jr, Hemp ST, Smith AE, Long TE (2012) Controlled radical polymerization of 4-vinylimidazole. Macromolecules 45(9):3669–3676. doi:10.1021/ma300543h

    Article  CAS  Google Scholar 

  • Bai LJ, Wang DJ, Chen H, Li DX, Xu YY, Yu LL, Wang WX (2015) Synthesis of peanut shell/polyacrylonitrile copolymer via Cu(0)-mediated RDRP and its adsorption behavior after modification. Polym Bull 72:2455–2469. doi:10.1007/s00289-015-1423-3

    Article  CAS  Google Scholar 

  • Chang L, Zhang X, Shi X, Zhao L, Liu X (2014) Preparation and characterization of a novel antibacterial fiber modified by quaternary phosphonium salt on the surface of polyacrylonitrile fiber. Fiber Polym 15(10):2026–2031. doi:10.1007/s12221-014-2026-6

    Article  CAS  Google Scholar 

  • Chen H, Liang Y, Wang ML, Lv PL, Xuan YH (2009) Reverse ATRP of ethyl acrylate with ionic liquids as reaction medium. Chem Eng J 147(2–3):297–301. doi:10.1016/j.cej.2008.11.007

    Article  CAS  Google Scholar 

  • Chen YY, Kuo CC, Chen BY, Chiu PC, Tsai PC (2015) Multifunctional polyacrylonitrile-ZnO/Ag electrospun nanofiber membranes with various ZnO morphologies for photocatalytic, UV-shielding, and antibacterial applications. J Polym Sci Pt B Polym Phys 53(4):262–269. doi:10.1002/polb.23621

    Article  CAS  Google Scholar 

  • Croisier F, Sibret P, Dupont-Gillain CC, Genet MJ, Detrembleur C, Jérôme C (2015) Chitosan-coated electrospun nanofibers with antibacterial activity. J Mater Chem B 3:3508–3517. doi:10.1039/C5TB00158G

    Article  CAS  Google Scholar 

  • Eckhardt S, Brunetto PS, Gagnon G, Priebe M, Giese B (2013) Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev 113(7):4708–4754. doi:10.1021/cr300288vl

    Article  CAS  Google Scholar 

  • Ghodsinia SSE, Akhlaghinia B (2015) A rapid metal free synthesis of 5-substituted-1H-tetrazoles using cuttlebone as a natural high effective and low cost heterogeneous catalyst. Rsc Adv 5(62):49849–49860. doi:10.1039/C5RA08147E

    Article  CAS  Google Scholar 

  • Ghorbani-Choghamarani A, Moradi P, Tahmasbi B (2016) Ni–S-methylisothiourea complexes supported on boehmite nanoparticles and their application in the synthesis of 5-substituted tetrazoles. RSC Adv 6:56638–56646. doi:10.1039/C6RA08026J

    Article  CAS  Google Scholar 

  • Goel K, Bera S, Singh M, Mondal D (2016) Synthesis of dual functional pyrimidinium ionic liquids as reaction media and antimicrobial agents. RSC Adv 6:106806–106820. doi:10.1039/C6RA21865B

    Article  CAS  Google Scholar 

  • Golas PL, Matyjaszewski K (2010) Marrying click chemistry with polymerization: expanding the scope of polymeric materials. Chem Soc Rev 39:1338–1354. doi:10.1039/B901978M

    Article  CAS  Google Scholar 

  • Gutmann B, Roduit JP, Roberge D, Kappe CO (2010) Synthesis of 5-substituted 1H-tetrazoles from nitriles and hydrazoic acid by using a safe and scalable high-temperature microreactor approach. Angew Chem Int Ed 49(39):7101–7105. doi:10.1002/anie.201003733

    Article  CAS  Google Scholar 

  • Hao H, Zheng X, Song L, Wang R, Zeng Z (2012) Electrostatic spin crossover in a molecular junction of a single-molecule magnet Fe{2}. Phys Rev Lett 108(1):140–144. doi:10.1103/PhysRevLett.108.017202

    Article  Google Scholar 

  • Huang MR, Li XG, Li SX, Zhang W (2004) Resultful synthesis of polyvinyltetrazole from polyacrylonitrile. React Funct Polym 59(1):53–61. doi:10.1016/j.reactfunctpolym.2003.12.007

    Article  CAS  Google Scholar 

  • Kacprzak K, Skiera I, Piasecka M, Paryzek Z (2016) Alkaloids and isoprenoids modification by copper (I)-catalyzed huisgen 1, 3-dipolar cycloaddition (click chemistry): toward new functions and molecular architectures. Chem Rev 116(10):5689–5743. doi:10.1021/acs.chemrev.5b00302

    Article  CAS  Google Scholar 

  • Ke P, Jiao XN, Ge XH, Xiao WM, Yu B (2014) From macro to micro: structural biomimetic materials by electrospinning. RSC Adv 4:39704–39724. doi:10.1039/C4RA05098C

    Article  CAS  Google Scholar 

  • Liu X, Chen H, Wang CH, Qu RJ, Ji CN, Sun CM, Zhang Y (2010) Synthesis of porous acrylonitrile/methyl acrylate copolymer beads by suspended emulsion polymerization and their adsorption properties after amidoximation. J Hazard Mat 175(1–3):1014–1021. doi:10.1016/j.jhazmat.2009.10.111

    Article  CAS  Google Scholar 

  • Liu R, Ge HW, Wang X, Luo J, Li ZQ, Liu XY (2016) Three-dimensional Ag–tannic acid–graphene as an antibacterial material. New J Chem 40:6332–6339. doi:10.1039/C6NJ00185H

    Article  CAS  Google Scholar 

  • Luo CJ, Stoyanov SD, Stride E, Pelan E, Edirisinghe M (2012) Electrospinning versus fibre production methods: from specifics to technological convergence. Chem Soc Rev 41:4708–4735. doi:10.1039/C2CS35083A

    Article  CAS  Google Scholar 

  • Luo D, Zhang X, Shahid S, Cattell MJ, Gould DJ, Sukhorukov GB (2017) Electrospun poly (lactic acid) fibers containing novel chlorhexidine particles with sustained antibacterial activity. Biomater Sci 5:111–119. doi:10.1039/C6BM00646A

    Article  CAS  Google Scholar 

  • Ma C, Liu L, Hua W, Cai YN, Yao JM (2015) Fabrication and characterization of absorbent and antibacterial alginate fibers loaded with Sulfanilamide. Fiber Polym 16(6):1255–1261. doi:10.1007/s12221-015-1255-7

    Article  CAS  Google Scholar 

  • Malik MA, Althabaiti SA (2012) Synthesis, structure optimization and antifungal screening of novel tetrazole ring bearing acyl-hydrazones. Int J Mol Sci 13(9):10880–10898. doi:10.3390/ijms130910880

    Article  CAS  Google Scholar 

  • Mani P, Singh AK, Awasthi SK (2014) AgNO3 catalyzed synthesis of 5-substituted-1 H-tetrazole via [3+2] cycloaddition of nitriles and sodium azide. Tetrahedron Lett 55(11):1879–1882. doi:10.1002/chin.201435154

    Article  CAS  Google Scholar 

  • Mansfeld U, Pietsch C, Hoogenboom R, Becer CR, Schubert US (2010) Clickable initiators, monomers and polymers in controlled radical polymerizations—a prospective combination in polymer science. Polym Chem 1:1560–1598. doi:10.1039/C0PY00168F

    Article  CAS  Google Scholar 

  • Moore BL, Lu A, Longbottom DA, O’Reilly RK (2013) Immobilization of MacMillan catalyst via controlled radical polymerization: catalytic activity and reuse. Polym Chem 4(7):2304–2312. doi:10.1039/C3PY21125H

    Article  CAS  Google Scholar 

  • Palza H, Escobar B, Bejarano J, Bravo D, Diazdosque M, Perez J (2013) Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method. Mat Sci Eng C-Mater 33(7):3795–3801. doi:10.1016/j.msec.2013.05.012

    Article  CAS  Google Scholar 

  • Petrov SP, Miteva MP (2012) Formation of membranes based on polyacrylonitrile and butadiene-acrylonitrile elastomer in the presence of copper ions. Chem Pap 66(11):1039–1047. doi:10.2478/s11696-012-0220-9

    Article  Google Scholar 

  • Pola R, Braunová A, Laga R, Pechar M, Ulbrich K (2014) Click chemistry as a powerful and chemoselective tool for the attachment of targeting ligands to polymer drug carriers. Polym Chem 5:1340–1350. doi:10.1039/C3PY01376F

    Article  CAS  Google Scholar 

  • Roh J, Vávrová K, Hrabálek A (2012) Synthesis and functionalization of 5-substituted tetrazoles. Eur J Org Chem 31:6101–6118. doi:10.1002/ejoc.201200469

    Article  Google Scholar 

  • Saghatchi F, Ahmadi E, Mohamadnia Z, Hajifatheali H, Tabebordbar H, Karimi F (2014) Cu-based atom transfer radical polymerization of methyl methacrylate using a novel tridentate ligand with mixed donor atoms. Chem Pap 68(11):1555–1560. doi:10.2478/s11696-014-0613-z

    Article  CAS  Google Scholar 

  • Shi Q, Vitchuli N, Nowak J, Caldwell JM, Breidt F, Bourham M, Zhang X, Mccord M (2011) Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning. Eur Polym J 47(7):1402–1409. doi:10.1016/j.eurpolymj.2011.04.002

    Article  CAS  Google Scholar 

  • Sreekumar TV, Liu T, Min BG, Guo H, Kumar S, Hauge RH, Smalley RE (2014) Polyacrylonitrile single-walled carbon nanotube composite fibers. Adv Mater 16(1):58–61. doi:10.1002/adma.200305456

    Article  Google Scholar 

  • Tang B, Li JL, Hou XL, Afrin T, Sun L, Wang XG (2013) Colorful and antibacterial silk fiber from anisotropic silver nanoparticles. Ind Eng Chem Res 52(12):4556–4563. doi:10.1021/ie3033872

    Article  CAS  Google Scholar 

  • Tsarevsky NV, Bernaerts KV, Dufour B, Du Prez FE, Matyjaszewski K (2004) Well-defined (Co) polymers with 5-vinyltetrazole units via combination of atom transfer radical (Co) polymerization of acrylonitrile and “click chemistry”-type postpolymerization modification. Macromolecules 37(25):9308–9313. doi:10.1021/ma048207q

    Article  CAS  Google Scholar 

  • Turgmancohen S, Genzer J (2011) Simultaneous bulk- and surface-initiated controlled radical polymerization from planar substrates. J Am Chem Soc 133(44):17567–17569. doi:10.1021/ja2081636

    Article  CAS  Google Scholar 

  • Vellayappan MV, Venugopal JR, Ramakrishna S, Ray S, Ismail AF, Mandal M, Manikandan A, Seal S, Jaganathan SK (2016) Electrospinning applications from diagnosis to treatment of diabetes. RSC Adv 6:83638–83655. doi:10.1039/C6RA15252J

    Article  CAS  Google Scholar 

  • Wong I, Teo GH, Neto C, Thickett SC (2015) Micropatterned surfaces for atmospheric water condensation via controlled radical polymerization and thin film dewetting. ACS Appl Mater Interfaces 7(38):21562–21570. doi:10.1021/acsami.5b06856

    Article  CAS  Google Scholar 

  • Zeng X, Huang LQ, Wang CN, Wang JS, Li JT, Luo XT (2016) Sonocrystallization of ZIF-8 on electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property through synergistic effect. ACS Appl Mater Interfaces 8(31):20274–20282. doi:10.1021/acsami.6b05746

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang J, Zhang B, Tang J (2013) Mussel-inspired functionalization of graphene for synthesizing Ag-polydopamine-graphene nanosheets as antibacterial materials. Nanoscale 5(1):118–123. doi:10.1039/C2NR32092D

    Article  Google Scholar 

  • Zhang PP, Wang HX, Zhang XY, Xu W, Li Y, Li Q, Wei G, Su ZQ (2016) Graphene film doped with silver nanoparticles: self-assembly formation, structural characterizations, antibacterial ability, and biocompatibility. Biomater Sci 3:852–860. doi:10.1039/C5BM00058K

    Article  Google Scholar 

  • Zhao W, Liu L, Wang L, Li NW (2016) Functionalization of polyacrylonitrile with tetrazole groups for ultrafiltration membranes. RSC Adv 6:72133–72140. doi:10.1039/C6RA10322G

    Article  CAS  Google Scholar 

  • Zhou YF, Jiang XX, Tang J, Su YY, Peng F, Lu YM, Peng R, He YJ (2014) A silicon-based antibacterial material featuring robust and high antibacterial activity. J Mater Chem B 2:691–697. doi:10.1039/C3TB21367F

    Article  CAS  Google Scholar 

  • Zong GX, Chen H, Qu RJ, Wang CH, Ji NY (2011) Synthesis of polyacrylonitrile-grafted cross-linked N-chlorosulfonamidated polystyrene via surface-initiated ARGET ATRP, and use of the resin in mercury removal after modification. J Hazard Mat 186(1):614–621. doi:10.1016/j.jhazmat.2010.11.043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The finance was supported by the National Natural Science Foundation of China (Nos. 21404052, 21404051 and 51573075), the Natural Science Foundation of Shandong Province (No. ZR2014BQ016), the Project of Shandong Province Higher Educational Science (No. J16LC20) and Technology Program and the Program for Scientific Research Innovation Team in Colleges and universities of Shandong Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hou Chen or Liang-jiu Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Wx., Liu, Y., Wang, Yx. et al. A novel and convenient preparation of antibacterial polyacrylonitrile nanofibers via post-modification using nitrile click chemistry and electrospinning. Chem. Pap. 72, 191–200 (2018). https://doi.org/10.1007/s11696-017-0270-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0270-0

Keywords

Navigation