Skip to main content
Log in

Flavonoids from Cirsium japonicum var. maackii pappus as inhibitors of aldose reductase and their simultaneous determination

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

An Erratum to this article was published on 22 August 2017

This article has been updated

Abstract

Aldose reductase is an enzyme in the polyol pathway which is associated in the progression of diabetic complications. In this study, we evaluated the inhibitory activity of Cirsium japonicum var. maackii pappus (CJP) against rat lens aldose reductase (RLAR). The ethanolic extract, fractions and isolated flavonoids were subjected to an RLAR assay. Isolation of chloroform (CHCl3) and ethyl acetate (EtOAc) fractions led to the identification of four flavonoids: hispidulin (1), cirsimaritin (2), apigenin (3), and cirsimarin (4). The RLAR assay results suggested that the EtOAc fraction and flavonoids 1 and 3 promoted better AR inhibition than did TMG (control). The half-maximal inhibitory concentration (IC50) of compounds 1 and 3 was 0.77 and 3.19 μM, respectively. A simultaneous determination of flavonoid content using HPLC–UV indicated that CJP contained large amounts of compounds 2 and 3 (1.65 and 1.84 mg/g, respectively). Flavonoids from Cirsium species have been widely reported to show various pharmacological activities. This study indicated that CJP has the potential to prevent diabetic complications and was a potential source of flavonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 22 August 2017

    An erratum to this article has been published.

References

  • Behl T, Kotwani A (2017) Chinese herbal drugs for the treatment of diabetic retinopathy. J Pharm Pharmacol 69:223–235. doi:10.1111/jphp.12683

    Article  CAS  Google Scholar 

  • Bohren KM, Bullock B, Wermuth B, Gabbay KH (1989) The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases. J Biol Chem 264:9547–9551

    CAS  Google Scholar 

  • Collins JG, Corder CN (1977) Aldose reductase and sorbitol dehydrogenase distribution in substructures of normal and diabetic rat lens. Invest Ophthalmol Vis Sci 16:242–243

    CAS  Google Scholar 

  • Dunstan DW, Zimmet PZ, Welborn TA, De Courten MP, Cameron AJ, Sicree RA, Dwyer T, Colagiuri S, Jolley D, Knuiman M, Atkins R (2002) The rising prevalence of diabetes and impaired glucose tolerance. Diabetes Care 25:829–834. doi:10.2337/diacare.25.5.829

    Article  Google Scholar 

  • Dvornik D, Simard-Duquesne N, Krami M, Sestanj K, Gabbay KH, Kinoshita JH, Varma SD, Merola LO (1973) Polyol accumulation in galactosemic and diabetic rats: control by an aldose reductase inhibitor. Science 182:1146–1148. doi:10.1126/science.182.4117.1146

    Article  CAS  Google Scholar 

  • Ganzera M, Pöcher A, Stuppner H (2005) Differentiation of Cirsium japonicum and C. setosum by TLC and HPLC-MS. Phytochem Anal 16:205–209. doi:10.1002/pca.846

    Article  CAS  Google Scholar 

  • Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103:137–149. doi:10.1016/j.diabres.2013.11.002

    Article  CAS  Google Scholar 

  • Hasrat JA, Bruyne TD, Backer JP, Vauquelin G, Vlietinck AJ (1997) Cirsimarin and cirsimaritin, flavonoids of Microtea debilis (Phytolaccaceae) with adenosine antagonistic properties in rats: leads for new therapeutics in acute renal failure. J Pharm Pharmacol 49:1150–1156. doi:10.1111/j.2042-7158.1997.tb06059.x

    Article  CAS  Google Scholar 

  • Hayman S, Kinoshita JH (1965) Isolation and properties of lens aldose reductase. J Biol Chem 240:877–882

    CAS  Google Scholar 

  • Hyun HB, Shrestha S, Boo KH, Cho SK (2015) Evaluation of antioxidant potential of ethyl acetate fraction of Rosmarinus officinalis L. and its major components. J Korean Soc Appl Biol Chem 58:715–722. doi:10.1007/s13765-015-0097-8

    Article  CAS  Google Scholar 

  • Ishida H, Umino T, Tsuji K, Kosuge T (1987) Studies on antihemorrhagic substances in herbs classified as hemostatics in Chinese medicine. VII On the antihemorrhagic principle in Cirsium japonicum DC. Chem Pharm Bull 35:861–864. doi:10.1248/cpb.35.861

    Article  CAS  Google Scholar 

  • Jeong DM, Jung HA, Choi JS (2008) Comparative antioxidant activity and HPLC profiles of some selected Korean thistles. Arch Pharm Res 31:28–33. doi:10.1007/s12272-008-1116-7

    Article  CAS  Google Scholar 

  • Jung HA, Yoon NY, Kang SS, Kim YS, Choi JS (2008) Inhibitory activities of prenylated flavonoids from Sophora flavescens against aldose reductase and generation of advanced glycation endproducts. J Pharm Pharmacol 60:227–1236. doi:10.1211/jpp.60.9.0016

    Article  Google Scholar 

  • Jung HA, Kim YS, Choi JS (2009) Quantitative HPLC analysis of two key flavonoids and inhibitory activities against aldose reductase from different parts of the Korean thistle, Cirsium maackii. Food Chem Toxicol 47:2790–2797. doi:10.1016/j.fct.2009.08.014

    Article  CAS  Google Scholar 

  • Jung HA, Jin SE, Min BS, Kim BW, Choi JS (2012) Anti-inflammatory activity of Korean thistle Cirsium maackii and its major flavonoid, luteolin 5-O-glucoside. Food Chem Toxicol 50:2171–2179. doi:10.1016/j.fct.2012.04.011

    Article  CAS  Google Scholar 

  • Jung HA, Park JJ, Min BS, Jung HJ, Islam MN, Choi JS (2015) Inhibition of advanced glycation endproducts formation by Korean thistle, Cirsium maackii. Asian Pac J Trop Dis 8:1–5. doi:10.1016/S1995-7645(14)60178-4

    Article  Google Scholar 

  • Kim SJ, Kim GH (2003) Identification for flavones in different parts of Cirsium japonicum. Prev Nutr Food Sci 8:330–335. doi:10.3746/jfn.2003.8.4.330

    Article  CAS  Google Scholar 

  • Kim DY, Kang SH, Ghil SH (2010) Cirsium japonicum extract induces apoptosis and anti-proliferation in the human breast cancer cell line MCF-7. Mol Med Rep 3:427–432. doi:10.3892/mmr_00000275

    CAS  Google Scholar 

  • Kim HM, Lee DG, Lee S (2015a) Plant-derived molecules from Saussurea grandifolia as inhibitors of aldose reductase. J Korean Soc Appl Biol Chem 58:365–371. doi:10.1007/s13765-015-0051-9

    Article  CAS  Google Scholar 

  • Kim YO, Kim JS, Lee SW, Jo IH, Na SW (2015b) Osteoprotective effect of extract from Cirsium japonicum var. ussuriense in ovariectomized rats. Korean J Med Crop Sci 23:1–7

    Article  CAS  Google Scholar 

  • Lee JH, Choi SI, Lee YS, Kim GH (2008) Antioxidant and anti-inflammatory activities of ethanol extract from leaves of Cirsium japonicum. Food Sci Biotechnol 17:38–45

    Google Scholar 

  • Li JWH, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165. doi:10.1126/science.1168243

    Article  Google Scholar 

  • Li L, Sun Z, Shang X, Li J, Wang R, Zhu J (2012) Triterpene compounds from Cirsium setosum. J Chinese Materia Medica 37:951–955

    CAS  Google Scholar 

  • Liao Z, Chen X, Wu M (2010) Antidiabetic effect of flavones from Cirsium japonicum DC in diabetic rats. Arch Pharm Res 33:353–362. doi:10.1007/s12272-010-0302-6

    Article  CAS  Google Scholar 

  • Liu S, Luo X, Li D, Zhang J, Qiu D, Liu W, She L, Yang Z (2006) Tumor inhibition and improved immunity in mice treated with flavone from Cirsium japonicum DC. Int Immunopharmacol 6:1387–1393. doi:10.1016/j.intimp.2006.02.002

    Article  CAS  Google Scholar 

  • Matsuda H, Morikawa T, Toguchida I, Yoshikawa M (2002) Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem Pharm Bull 50:788–795. doi:10.1248/cpb.50.788

    Article  CAS  Google Scholar 

  • Mok SY, Lee S (2013) Identification of flavonoids and flavonoid rhamnosides from Rhododendron mucronulatum for. albiflorum and their inhibitory activities against aldose reductase. Food Chem 136:969–974. doi:10.1016/j.foodchem.2012.08.091

    Article  CAS  Google Scholar 

  • Newman DJ, Cragg GM, Snader KM (2000) The influence of natural products upon drug discovery. Nat Prod Rep 17:215–234. doi:10.1039/A902202C

    Article  CAS  Google Scholar 

  • Noh YH, Lee JW, Park J, Lee SH, Lee JY, Kim SS, Park KK, Kim TJ, Myung SC, Jeong Y (2016) Natural substance MS-10 improves women’s health via regulation of estrogen receptor. J Korean Soc Food Sci Nutr 45(903–910):1. doi:10.3746/jkfn.2016.45.6.903

    Google Scholar 

  • Pan Y, He C, Wang H, Ji X, Wang K, Liu P (2010) Antioxidant activity of microwave-assisted extract of Buddleia officinalis and its major active component. Food Chem 121:497–502. doi:10.1016/j.foodchem.2009.12.072

    Article  CAS  Google Scholar 

  • Park JC, Lee JH, Choi JS (1995) A flavone diglycoside from Cirsium japonicum var. ussuriense. Phytochemistry 39:261–262. doi:10.1016/0031-9422(94)00897-3

    Article  CAS  Google Scholar 

  • Saraswat M, Reddy PY, Muthenna P, Reddy GB (2008) Prevention of non-enzymic glycation of proteins by dietary agents: prospects for alleviating diabetic complications. Br J Nutr 101:1714–1721. doi:10.1017/S0007114508116270

    Article  Google Scholar 

  • Sato S, Kador PF (1990) Inhibition of aldehyde reductase by aldose reductase inhibitors. Biochem Pharmacol 40:1033–1042. doi:10.1016/0006-2952(90)90490-C

    Article  CAS  Google Scholar 

  • Sharma B, Balomajumder C, Roy P (2008) Hypoglycemic and hypolipidemic effects of flavonoid rich extract from Eugenia jambolana seeds on streptozotocin induced diabetic rats. Food Chem Toxicol 46:2376–2383. doi:10.1016/j.fct.2008.03.020

    Article  CAS  Google Scholar 

  • Shukla S, Gupta S (2010) Apigenin: a promising molecule for cancer prevention. Pharm Res 27:962–978. doi:10.1007/s11095-010-0089-7

    Article  CAS  Google Scholar 

  • Snow A, Shieh B, Chang KC, Pal A, Lenhart P, Ammar D, Ruzycki P, Palla S, Reddy GB, Petrash JM (2015) Aldose reductase expression as a risk factor for cataract. Chem Biol Interact 234:247–253. doi:10.1016/j.cbi.2014.12.017

    Article  CAS  Google Scholar 

  • Srivastava SK, Ramana KV, Bhatnagar A (2005) Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr Rev 26:380–392. doi:10.1210/er.2004-0028

    Article  CAS  Google Scholar 

  • Yabe-Nishimura C (1998) Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol Rev 50:21–34

    CAS  Google Scholar 

  • Yin J, Heo SI, Wang MH (2008) Antioxidant and antidiabetic activities of extracts from Cirsium japonicum roots. Nutr Res Pract 2:247–251. doi:10.4162/nrp.2008.2.4.247

    Article  Google Scholar 

  • Youl E, Bardy G, Magous R, Cros G, Sejalon F, Virsolvy A, Richard S, Quignard JF, Gross R, Petit P, Bataille D (2010) Quercetin potentiates insulin secretion and protects INS-1 pancreatic β-cells against oxidative damage via the ERK1/2 pathway. Br J Pharmacol 161:799–814. doi:10.1111/j.1476-5381.2010.00910.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chung-Ang University Research Grants in 2017 and by the grant from Imsil Herbal Medicine, Imsil, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghyun Lee.

Additional information

The original version of this article was revised: The spelling of the forth author was incorrect. The correct name is Jae Suk Shim. In Material and methods, Plant material, first sentence: the date was incorrect. The correct date is October 2014.

An erratum to this article is available at https://doi.org/10.1007/s11696-017-0271-z.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, J.P., Lee, Y.K., Woo, D.G. et al. Flavonoids from Cirsium japonicum var. maackii pappus as inhibitors of aldose reductase and their simultaneous determination. Chem. Pap. 72, 81–88 (2018). https://doi.org/10.1007/s11696-017-0259-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0259-8

Keywords

Navigation