Skip to main content
Log in

Oxidative stability and effect of stress factors on flaxseed oil-in-water emulsions stabilized by sodium caseinate–sodium alginate–chitosan interfacial membrane

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The susceptibility of heart healthy ω-3 fatty acids to lipid oxidation has hindered its incorporation into healthful foods and beverages. In this study, plant-based flaxseed oil rich in ω-3 fatty acids were dispersed into primary, secondary and tertiary emulsion system. A primary emulsion containing sodium caseinate-stabilized cationic droplets was prepared by homogenizing flaxseed oil as oil phase and sodium caseinate solution as the aqueous phase in an ultrasonicator. A secondary emulsion comprising of sodium caseinate–sodium alginate anionic droplets were produced by diluting appropriate primary emulsion with alginate solution. Further, a tertiary emulsion composed of sodium caseinate–sodium alginate–chitosan-coated cationic droplets was produced by diluting secondary emulsion with chitosan solution. The resistance of primary, secondary and tertiary emulsions with the same lipid concentration to destabilization by thermal treatment (30–90 °C for 30 min), sodium chloride addition (≤70 mM NaCl) and oxidative degradation (hydroperoxide concentration and TBARS) was determined. The results showed that secondary emulsions could resist variation in environmental stresses of salt and heat as well as protect the oil phase from decomposition better than primary and tertiary emulsions. Interfacial engineering could be used to design emulsion system with desirable characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aoki T, Decker EA, McClements DJ (2005) Influence of environmental stresses on stability of O/W emulsions containing droplets stabilized by multilayered membranes produced by a layer-by-layer electrostatic deposition technique. Food Hydrocoll 19:209–220. doi:10.1016/j.foodhyd.2004.05.006

    Article  CAS  Google Scholar 

  • Berton-Carabin C, Genot C, Gaillard C, Guibert D, Ropers M (2013) Design of interfacial films to control lipid oxidation in oil-in-water emulsions. Food Hydrocoll 33:99–105. doi:10.1016/j.foodhyd.2013.02.021

    Article  CAS  Google Scholar 

  • Casanova H, Dickinson E (1998) Influence of protein interfacial composition on salt stability of mixed casein emulsions. J Agric Food Chem 46:72–76. doi:10.1021/jf970600q

    Article  CAS  Google Scholar 

  • Chaprenet J, Berton-Carabin CC, Elias RJ, Coupland JN (2014) Effect of interfacial properties on the reactivity of a lipophilic ingredient in multilayered emulsions. Food Hydrocoll 42:56–65. doi:10.1016/j.foodhyd.2013.12.009

    Article  CAS  Google Scholar 

  • Corstens MN et al (2017) Destabilization of multilayered interfaces in digestive conditions limits their ability to prevent lipolysis in emulsions. Food Struct 12:54–63. doi:10.1016/j.foostr.2016.07.004

    Article  Google Scholar 

  • Csaba N, Köping-Höggård M, Alonso MJ (2009) Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. Int J Pharm 382:205–214. doi:10.1016/j.ijpharm.2009.07.028

    Article  CAS  Google Scholar 

  • Dickinson E (2010) Flocculation of protein-stabilized oil-in-water emulsions. Coll Surf B 81:130–140. doi:10.1016/j.colsurfb.2010.06.033

    Article  CAS  Google Scholar 

  • Dickinson E (2011) Mixed biopolymers at interfaces: competitive adsorption and multilayer structures. Food Hydrocoll 25:1966–1983. doi:10.1016/j.foodhyd.2010.12.001

    Article  CAS  Google Scholar 

  • Dlugogorski BZ, Kennedy EM, Mackie JC (2012) Identification and quantitation of volatile organic compounds from oxidation of linseed oil. Ind Eng Chem Res 51:5645–5652. doi:10.1021/ie202535d

    Article  Google Scholar 

  • Fang J-L, Vaca CE, Valsta LM, Mutanen M (1996) Determination of DNA adducts of malonaldehyde in humans: effects of dietary fatty acid composition. Carcinogenesis 17:1035–1040. doi:10.1093/carcin/17.5.1035

    Article  CAS  Google Scholar 

  • Fioramonti SA, Martinez MJ, Pilosof AM, Rubiolo AC, Santiago LG (2015) Multilayer emulsions as a strategy for linseed oil microencapsulation: effect of pH and alginate concentration. Food Hydrocoll 43:8–17. doi:10.1016/j.foodhyd.2014.04.026

    Article  CAS  Google Scholar 

  • Giroux HJ, St-Amant JB, Fustier P, Chapuzet J-M, Britten M (2008) Effect of electroreduction and heat treatments on oxidative degradation of a dairy beverage enriched with polyunsaturated fatty acids. Food Res Int 41:145–153. doi:10.1016/j.foodres.2007.10.008

    Article  CAS  Google Scholar 

  • Giroux HJ, Houde J, Britten M (2010) Use of heated milk protein–sugar blends as antioxidant in dairy beverages enriched with linseed oil LWT-food. Sci Technol 43:1373–1378. doi:10.1016/j.lwt.2010.05.001

    CAS  Google Scholar 

  • Goyal A, Sharma V, Sihag MK, Tomar SK, Arora S, Sabikhi L, Singh AK (2015) Development and physico-chemical characterization of microencapsulated flaxseed oil powder: a functional ingredient for omega-3 fortification. Powder Technol 286:527–537. doi:10.1016/j.powtec.2015.08.050

    Article  CAS  Google Scholar 

  • Gu YS, Decker AE, McClements DJ (2005) Production and characterization of oil-in-water emulsions containing droplets stabilized by multilayer membranes consisting of β-lactoglobulin, ι-carrageenan and gelatin. Langmuir 21:5752–5760. doi:10.1021/la046888c

    Article  CAS  Google Scholar 

  • Gudipati V, Sandra S, McClements DJ, Decker EA (2010) Oxidative stability and in vitro digestibility of fish oil-in-water emulsions containing multilayered membranes. J Agric Food Chem 58:8093–8099. doi:10.1021/jf101348c

    Article  CAS  Google Scholar 

  • Guzey D, McClements DJ (2006) Formation, stability and properties of multilayer emulsions for application in the food industry. Adv Coll Interf Sci 128–130:227–248. doi:10.1016/j.cis.2006.11.021

    Article  Google Scholar 

  • Guzey D, McClements DJ (2007) Impact of electrostatic interactions on formation and stability of emulsions containing oil droplets coated by β-lactoglobulin–pectin complexes. J Agric Food Chem 55:475–485. doi:10.1021/jf062342f

    Article  CAS  Google Scholar 

  • Güzey D, McClements DJ (2006) Influence of environmental stresses on O/W emulsions stabilized by β-lactoglobulin–pectin and β-lactoglobulin–pectin–chitosan membranes produced by the electrostatic layer-by-layer deposition technique. Food Biophys 1:30–40. doi:10.1007/s11483-005-9002-z

    Article  Google Scholar 

  • Hu M, McClements DJ, Decker EA (2003) Lipid oxidation in corn oil-in-water emulsions stabilized by casein, whey protein isolate, and soy protein isolate. J Agric Food Chem 51:1696–1700. doi:10.1021/jf020952j

    Article  CAS  Google Scholar 

  • Jo Y-J, Chun J-Y, Kwon Y-J, Min S-G, Choi M-J (2015) Formulation development of multilayered fish oil emulsion by using electrostatic deposition of charged biopolymers. Int J Food Eng 11:31–39. doi:10.1515/ijfe-2014-0177

    Article  CAS  Google Scholar 

  • Julio LM, Ixtaina VY, Fernández MA, Sánchez RMT, Wagner JR, Nolasco SM, Tomás MC (2015) Chia seed oil-in-water emulsions as potential delivery systems of ω-3 fatty acids. J Food Eng 162:48–55. doi:10.1016/j.jfoodeng.2015.04.005

    Article  CAS  Google Scholar 

  • Kartal C, Unal MK, Otles S (2016) Flaxseed oil-in-water emulsions stabilized by multilayer membranes: oxidative stability and the effects of pH. J Dispers Sci Technol. doi:10.1080/01932691.2016.1141294

    Google Scholar 

  • Katsuda MS, McClements DJ, Miglioranza LH, Decker EA (2008) Physical and oxidative stability of fish oil-in-water emulsions stabilized with β-lactoglobulin and pectin. J Agric Food Chem 56:5926–5931. doi:10.1021/jf800574s

    Article  CAS  Google Scholar 

  • Laye C, McClements DJ, Weiss J (2008) Formation of biopolymer-coated liposomes by electrostatic deposition of chitosan. J Food Sci 73:N7–N15. doi:10.1111/j.1750-3841.2008.00747.x

    Article  CAS  Google Scholar 

  • Leong T, Wooster T, Kentish S, Ashokkumar M (2009) Minimising oil droplet size using ultrasonic emulsification. Ultrason Sonochem 16:721–727. doi:10.1016/j.ultsonch.2009.02.008

    Article  CAS  Google Scholar 

  • Liu Y, Qiu S, Li J, Chen H, Tatsumi E, Yadav M, Yin L (2015) Peroxidase-mediated conjugation of corn fiber gum and bovine serum albumin to improve emulsifying properties. Carbohydr Polym 118:70–78. doi:10.1016/j.carbpol.2014.10.059

    Article  CAS  Google Scholar 

  • Liu F, Wang D, Sun C, McClements DJ, Gao Y (2016) Utilization of interfacial engineering to improve physicochemical stability of β-carotene emulsions: Multilayer coatings formed using protein and protein–polyphenol conjugates. Food Chem 205:129–139. doi:10.1016/j.foodchem.2016.02.155

    Article  CAS  Google Scholar 

  • Mao Y, Dubot M, Xiao H, McClements DJ (2013) Interfacial engineering using mixed protein systems: Emulsion-based delivery systems for encapsulation and stabilization of β-carotene. J Agric Food Chem 61:5163–5169. doi:10.1021/jf401350t

    Article  CAS  Google Scholar 

  • McClements DJ (2010) Emulsion design to improve the delivery of functional lipophilic components. Annu Rev Food Sci Technol 1:241–269. doi:10.1146/annurev.food.080708.100722

    Article  CAS  Google Scholar 

  • Noshad M, Mohebbi M, Shahidi F, Koocheki A (2015) Freeze–thaw stability of emulsions with soy protein isolate through interfacial engineering. Int J Refrig 58:253–260. doi:10.1016/j.ijrefrig.2015.05.007

    Article  CAS  Google Scholar 

  • Noshad M, Mohebbi M, Koocheki A, Shahidi F (2016) Influence of interfacial engineering on stability of emulsions stabilized with soy protein isolate. J Dispers Sci Technol 37:56–65. doi:10.1080/01932691.2015.1027907

    Article  CAS  Google Scholar 

  • Ogawa S, Decker EA, McClements DJ (2004) Production and characterization of O/W emulsions containing droplets stabilized by lecithin–chitosan–pectin mutilayered membranes. J Agric Food Chem 52:3595–3600. doi:10.1021/jf034436k

    Article  CAS  Google Scholar 

  • Qiu C, Zhao M, Decker EA, McClements DJ (2015) Influence of protein type on oxidation and digestibility of fish oil-in-water emulsions: gliadin, caseinate, and whey protein. Food Chem 175:249–257. doi:10.1016/j.foodchem.2014.11.112

    Article  CAS  Google Scholar 

  • Rabetafika HN, Van Remoortel V, Danthine S, Paquot M, Blecker C (2011) Flaxseed proteins: food uses and health benefits. Int J Food Sci Technol 46:221–228. doi:10.1111/j.1365-2621.2010.02477.x

    Article  CAS  Google Scholar 

  • Riediger ND, Othman R, Fitz E, Pierce GN, Suh M, Moghadasian MH (2008) Low n-6: n-3 fatty acid ratio, with fish-or flaxseed oil, in a high fat diet improves plasma lipids and beneficially alters tissue fatty acid composition in mice. Eur J Nutr 47:153–160. doi:10.1007/s00394-008-0709-8

    Article  CAS  Google Scholar 

  • Scheffler SL, Wang X, Huang L, San-Martin Gonzalez F, Yao Y (2009) Phytoglycogen octenyl succinate, an amphiphilic carbohydrate nanoparticle, and ε-polylysine to improve lipid oxidative stability of emulsions. J Agric Food Chem 58:660–667. doi:10.1021/jf903170b

    Article  Google Scholar 

  • Shim YY, Gui B, Wang Y, Reaney MJT (2015) Flaxseed (Linum usitatissimum L.) oil processing and selected products. Trends Food Sci Technol 43:162–177. doi:10.1016/j.tifs.2015.03.001

    Article  CAS  Google Scholar 

  • Siddiqui RA, Shaikh SR, Sech LA, Yount HR, Stillwell W, Zaloga GP (2004) Omega 3-fatty acids: health benefits and cellular mechanisms of action. Mini Rev Med Chem 4:859–871. doi:10.2174/1389557043403431

    Article  CAS  Google Scholar 

  • Taherian AR, Britten M, Sabik H, Fustier P (2011) Ability of whey protein isolate and/or fish gelatin to inhibit physical separation and lipid oxidation in fish oil-in-water beverage emulsion. Food Hydrocoll 25:868–878. doi:10.1016/j.foodhyd.2010.08.007

    Article  CAS  Google Scholar 

  • Tokle T, Mao Y, McClements DJ (2013) Potential biological fate of emulsion-based delivery systems: lipid particles nanolaminated with lactoferrin and β-lactoglobulin coatings. Pharm Res 30:3200–3213. doi:10.1007/s11095-013-1003-x

    Article  CAS  Google Scholar 

  • Yang Y, Cui SW, Gong J, Guo Q, Wang Q, Hua Y (2015) A soy protein-polysaccharides Maillard reaction product enhanced the physical stability of oil-in-water emulsions containing citral. Food Hydrocoll 48:155–164. doi:10.1016/j.foodhyd.2015.02.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the technical support extended by Mr. Susanta Pradhan for confocal laser scanning microscopy imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preetam Sarkar.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivapratha, S., Sarkar, P. Oxidative stability and effect of stress factors on flaxseed oil-in-water emulsions stabilized by sodium caseinate–sodium alginate–chitosan interfacial membrane. Chem. Pap. 72, 1–14 (2018). https://doi.org/10.1007/s11696-017-0252-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0252-2

Keywords

Navigation