Skip to main content
Log in

Water leaves extracts of Cornus mas and Cornus kousa as aldose reductase inhibitors: the potential therapeutic agents

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The Cornaceae family is mainly known for the research connected with its fruits and flowers, but the biological activities of leaves of Cornus species are not very intensively studied. Present work is focused on inhibition of rat lens aldose reductase, cytotoxicity, and study of oxidant efficacy on NIH-3T3 cells of the water extracts of the leaves of Cornus mas and Cornus kousa. The obtained results showed effective inhibition of isolated rat lens aldose reductase in low µg/mL level, antioxidant properties at lower concentration (50 µg/mL), and slight prooxidant properties at higher concentration (100 µg/mL). The prooxidant properties could contribute to cytotoxicity when the cells incubated with the extracts of concentration 100 µg/mL reduced 10% of MTT of control cells. The biological activities of two Cornus species were quite similar in all our tests. Low concentrations of both water leaves extracts could be perspective agents for potential treatment of chronic diabetic complications, inflammation, and another diseases connected with aldose reductase enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barski OA, Tipparaju SM, Bhatnagar A (2008) The aldo–keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 40(4):553–624. doi:10.1080/03602530802431439

    Article  CAS  Google Scholar 

  • Boots AW, Kubben N, Haenen GRMM, Bast A (2003) Oxidized quercetin reacts with tiols rather than with ascorbate: implication for quercetin supplementation. Biochem Biophys Res Commun 308:560–565. doi:10.1016/S0006-291X(03)01438-4

    Article  CAS  Google Scholar 

  • Forman V, Haladová M, Grančai D, Ficková M (2015) Antiproliferative activities of water infusions from leaves of five Cornus L. species. Molecules 20:22546–22552. doi:10.3390/molecules201219786

    Article  CAS  Google Scholar 

  • Forman V, Bukovský M, Grančai D (2016) Immunomodulatory activity of leaf infusions of selected Cornaceae species on human leukocytes. Nat Prod Commun 11:1–3

    Google Scholar 

  • Gabbay KH (2004) Aldose reductase inhibition in the treatment of diabetic neuropathy: where are we in 2004? Curr Diab Rep 4(6):405–408. doi:10.1007/s11892-004-0047-z

    Article  Google Scholar 

  • Gonzales RG, Barnett P, Aguayo J, Cheng HM, Chylack LT (1984) Direct measurement of polyol pathway activity in the ocular lens. Diabetes 33:196–199. doi:10.2337/diab.33.2.196

    Article  Google Scholar 

  • Hayman S, Kinoshita J (1965) Isolation and properties of lens aldose reductase. J Biol Chem 240:877–882

    CAS  Google Scholar 

  • Hotta N (1995) New approaches for treatment in diabetes: aldose reductase inhibitors. Biomed Pharmacother 5:232–243. doi:10.1016/0753-3322(96)82629-1

    Article  Google Scholar 

  • Jung HA, Yoon NY, Kang SS, Kim YS, Choi JS (2008) Inhibitory activities of prenylated flavonoids from Sophora flavescens against aldose reductase and generation of advanced glycation endproducts. J Pharm Pharmacol 60:1227–1236. doi:10.1211/jpp.60.9.0016

    Article  CAS  Google Scholar 

  • Kador PF, O´Meara JD, Blessing K, Marx DB, Reinhardt RA (2011) Efficacy of structurally diverse aldose reductase inhibitors on experimental periodontitis in rats. J Periodontol 82(6):926–933. doi:10.1902/jop.2010.100442

    Article  CAS  Google Scholar 

  • Laffin BJ, Petrash M (2012) Expression of the aldo-ketoreductases AKR1B1 and AKR1B10 in human cancers. Front Pharmacol. doi:10.3389/fphar.2012.00104

    Google Scholar 

  • Lee DY, Song MC, Yoo KH, Bang MH et al (2007) Lignans from the fruits of Cornus kousa Burg. And their cytotoxic effects on human cancer cell lines. Arch Pharm Res 30(4):402–407. doi:10.1007/BF02980211

    Article  CAS  Google Scholar 

  • Ma W, Wang K-J, Cheng Ch-S, Yan G et al (2014) Bioactive compounds from Cornus officinalis fruits ant their effects on diabetic nephropathy. J Etnopharmacol 153:840–845. doi:10.1016/j.jep.2014.03.051

    Article  CAS  Google Scholar 

  • Matsuda H, Morikawa T, Toquchida I, Yoshikawa M (2002) Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem Pharm Bull 50(6):788–795. doi:10.1248/cpb.50.788

    Article  CAS  Google Scholar 

  • Metodiewa D, Jaiswal AK, Cenas N, Dickancaite E, Segura Aguilar J (1999) Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic Biol Med 26:107–116. doi:10.1016/S0891-5849(98)00167-1

    Article  CAS  Google Scholar 

  • Milackova I, Soltesova Prnova M, Majekova M, Sotnikova R, Stasko M, Kovacikova L, Banerjee S, Veverka M, Stefek M (2015) 2-Chloro-1,4-naphthoquinone derivative of quercetin as an inhibitor of aldose reductase and anti-inflammatory agent. J Enzyme Inhib Med Chem 30(1):107–113. doi:10.3109/14756366.2014.892935

    Article  CAS  Google Scholar 

  • O´Brien PJ (1991) Molecular mechanisms of quinone cytotoxicity. Chem Biol Interact 80:1–41. doi:10.1016/0009-2797(91)90029-7

    Article  Google Scholar 

  • Polat R, Cakilcioglu U, Satil F (2013) Traditional uses of medicinal plants in Solhan (Bingöl-Turkey). J Ethnopharmacol 148(3):951–963. doi:10.1016/j.jep.2013.05.050

    Article  CAS  Google Scholar 

  • Robaszkiewicz A, Balcerczyk A, Bartosz G (2007) Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biol Int 31:1245–1250. doi:10.1016/j.cellbi.2007.04.009

    Article  CAS  Google Scholar 

  • Soltani R, Gorji A, Asgary S, Sarrafzadegan N, Siavash M (2015) Evaluation of the effects of Cornus mas L. Fruit extract on glycemic control and insulin level in type 2 diabetic adult patients: a randomized double-blind placebo-controlled clinical trial. J Evid Based Complement Altern Med 740954:1–5. doi:10.1155/2015/740954

    Google Scholar 

  • Son AY, Kim NK, Lee S, Singh D, Kim GR, Lee JS et al (2016) Metabolite fingerprinting, pathway analyses, and bioactivity correlations for plant species belonging to the Cornaceae, Fabaceae, and Rosaceae families. Plant Cell Rep 35(9):1917–1931. doi:10.1007/s00299-016-2006-y

    Article  CAS  Google Scholar 

  • Sozanski T, Kucharska AZ, Szumny A, Magdala J, Bielska K, Merwid-Lad A, Wozniak A, Dzimira S, Piorecki N, Trocha M (2014) The protective effect of the Cornus mas fruits (cornelian cherry) on hypertriglyceridemia and atherosclerosis through PPARα activation in hypercholesterolemic rabbits. Phytomedicine 21(13):1774–1784. doi:10.1016/j.phymed.2014.09.005

    Article  CAS  Google Scholar 

  • Srivastava SK, Yadav UCS, Reddy ABM, Saxena A et al (2011) Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders. Chem Biol Interact 191:330–338. doi:10.1016/j.cbi.2011.02.023

    Article  CAS  Google Scholar 

  • Stefek M, Snirc V, Djoubissie PO et al (2008) Carboxymethylated pyridoindole antioxidants as aldose reductase inhibitors: synthesis, activity, partitioning, and molecular modelling. Bioorg Med Chem 16:4908–4920. doi:10.1016/j.bmc.2008.03.039

    Article  CAS  Google Scholar 

  • Vander Jagt D, Robinson B, Taylor KK, Hunsaker LA (1992) Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complication. J Biol Chem 267:4364–4369

    CAS  Google Scholar 

  • Yadav UC, Srivastava SK, Ramana KV (2007) Aldose reductase inhibition prevents endotoxin-induced uveitis in rats. Investig Ophthalmol Vis Sci 48(10):4634–4642. doi:10.1167/iovs.07-0485

    Article  Google Scholar 

  • Yadav UC, Ramana KV, Srivastava SK (2011) Aldose reductase inhibition suppresses airway inflammation. Chem Biol Interact 191(1–3):339–345. doi:10.1016/j.cbi.2011.02.014

    Article  CAS  Google Scholar 

  • Yousefi B, Abasi M, Abbasi MM, Jahanban-Esfahlan R (2015) Anti-proliferative properties of cornus mass fruit in different human cancer cells. Asian Pac J Cancer Prev 16(14):5727–5731. doi:10.7314/APJCP.2015.16.14.5727

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants VEGA-1/0646/14, VEGA-1/0290/16, APVV-15-0308 and VEGA-1/0048/15. Acknowledgments for additional material and working help belong to Dr. Vladimír Forman. Kind acknowledgments belong also to Mária Červeňová and Karol Pavlovkin for helping us with the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Miláčková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miláčková, I., Meščanová, M., Ševčíková, V. et al. Water leaves extracts of Cornus mas and Cornus kousa as aldose reductase inhibitors: the potential therapeutic agents. Chem. Pap. 71, 2335–2341 (2017). https://doi.org/10.1007/s11696-017-0227-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0227-3

Keywords

Navigation