Skip to main content
Log in

Enzymatic epoxidation of soybean oil in the presence of perbutyric acid

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Enzymatic epoxidation of vegetable oils using a long chain fatty acid as an active oxygen carrier could produce a desirable epoxy oxygen group content (EOC); however, the acid value (AV) of final epoxidized oil is too high. The present study was to investigate the effect of different fatty acids with varying length of carbon chain on EOC and AV of the final epoxidized soybean oil (ESO); finding butyric acid was the choice of active oxygen carrier when hydrogen peroxide was used as an oxygen donor in the presence of lipase Novozyme 435. And in situ IR was used to monitor the epoxidation process, which revealed that the formation of perbutyric acid was the key step in the whole reaction. The epoxidation process was optimized as follows: molar ratio of butyric acid/C=C bonds of 0.19:1, 8% of immobilized lipase Novozyme 435 load (relative to the weight of soybean oil) and molar ratio of H2O2/C=C bonds of 3.5:1, reaction time of 4 h and reaction temperature of 45 °C. Under these conditions, ESO with a high EOC (7.62 ± 0.20%) and a lower AV value (8.53 ± 0.18 mgKOH/g) was obtained. The oxriane conversion degree was up to 97.94%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AV:

Acid value

EOC:

Epoxy oxygen group content

ESO:

Epoxidized soybean oil

EVO:

Epoxidized vegetable oil

PV:

Peroxide value

RCO:

Relative conversion oxriane

References

  • Campanella A, Baltanas MA (2005) Degration of the oxirane ring of exopoxidized vegetable oils in liquid–liquid systems: II. Reactivity with solvated acetic and peracetic. Lat Am Appl Res 35:211–216. doi:10.5702/massspec.54.235

    CAS  Google Scholar 

  • Crivello JV, Narayan R, Stemstein SS (1997) Fabrication and mechanical characterization of glass fiber reinforced UV-cured composites from epoxidized vegetable oils. J Appl Polym Sci 64:2073–2087

    Article  CAS  Google Scholar 

  • Daniel MS, Nicolas RL, Vicente G, Vicente GF (2014) Chemoenzymatic epoxidation of alkenes based on peracid formation by a Rhizomucor miehei lipase-catalyzed perhydrolysis reaction. Chemistry 70:1144–1148. doi:10.1016/j.tet.2013.12.084

    Google Scholar 

  • De Souza AVA, Cajaiba da Silva JF (2013) Biodiesel synthesis evaluated by using real-time ATR-FTIR. Org Process Res Dev 17:127–132. doi:10.1021/op300318k

    Article  Google Scholar 

  • Fantoni L, Simoneau C (2004) European survey of contamination of homogenized baby food by epoxidized soybean oil migration from plasticized PVC gaskets. Food Addit Contam 20:1087–1096. doi:10.1080/026520303/0001615186

    Article  Google Scholar 

  • Fukui YK, Oda S, Suzuki H, Hakogi T, Yamada D, Takagi Y, Aoyama Y, Kitamura H, Ogawa M, Kikuchi J (2012) Process optimization of aldol-type reaction by process understanding using in situ IR. Org Process Res Dev 16:1783–1786. doi:10.1021/op300186p

    Article  CAS  Google Scholar 

  • Gerbase AE, Gregorio JR, Martinelli M, Brasil MC, Mendes ANF (2002) Epoxidation of soybean oil by the methyltrioxorhenium-CH2Cl2/H2O2 catalytic biphasic system. J Am Oil Chem Soc 79:179–181. doi:10.1007/s11746-002-0455-0

    Article  CAS  Google Scholar 

  • Hosseini S (2014) Lipase epoxidation optimlzing of Jatropha curcas oil using perlauric acid. Dig J Nano Bios 9:1159–1169

    Google Scholar 

  • Hwang HS, Erhan SZ (2001) Modification of epoxidized soybean oil for lubricant formulations with improved oxidative stability and low pour point. J Am Oil Chem Soc 12:1179–1184. doi:10.1007/s11745-001-0410-0

    Article  Google Scholar 

  • Leadbeater NE (2010) In situ reaction monitoring of microwave-mediated reactions using IR spectroscopy. Chem Commun 46:6693–6695. doi:10.1039/c0cc01921f

    Article  CAS  Google Scholar 

  • Liu W, Chen JN, Liu RL, Bi YL (2016) Revisiting the enzymatic epoxidation of vegetable oils by perfatty acid: perbutyric acid effect on the oil with low acid value. J Am Oil Chem Soc 93:1479–1486. doi:10.1007/s11746-016-2897-3

    Article  CAS  Google Scholar 

  • Lu H, Sun SD, Bi YL, Yang GL, Ma RL, Yang HF (2010) Enzymatic epoxidation of soybean oil methyl esters in the presence of free fatty acids. Eur J Lipid Sci Technol 112:1101–1105. doi:10.1002/ejlt.201000041

    Article  CAS  Google Scholar 

  • Paquot C (1979) Standard methods for the analysis of oils, fats and derivatives part, 6th edn. Pergamon, Oxford, pp 66–70

    Book  Google Scholar 

  • Paquot C, Hautfenne A (1987) Standard methods for the analysis of oils, fats and derivatives, 7th edn. Blackwell Scientific Publications, Oxford, pp 118–119

    Google Scholar 

  • Petrovic ZS, Zlatanic A, Lava CC, Sinadinovic-Fiser S (2002) Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acids Kinetics and side reactions. Eur J Lipid Sci Technol 104:293–299

    Article  CAS  Google Scholar 

  • Salimon J, Abdullah BM, Yusop RM, Salih N (2014) Synthesis, reactivity and application studies for different biolubricants. Chem Cent J 8:3225–3233. doi:10.1186/1752-153x-8-16

    Article  Google Scholar 

  • Sun SD, Ke XQ, Cui LL, Yang GL, Bi YL, Song FF, Xu XD (2011a) Enzymatic epoxidation of Sapindus mukorossi seed oil by perstearic acid optimized using response surface methodology. Ind Crops Prod 33:676–682. doi:10.1016/jindcrop.2011.01.002

    Article  CAS  Google Scholar 

  • Sun SD, Yang GL, Bi YL, Liang H (2011b) Enzymatic epoxidation of corn oil by perstearic acid. J Am Oil Chem Soc 88:1567–1571. doi:10.1007/s11746-0011-1820-1

    Article  CAS  Google Scholar 

  • Sun SD, Yang GL, Bi YL, Xia FG (2014) Enzymatic epoxidation of soybean oil using ionic liquid as reaction media. J Oleo Sci 63:383–390. doi:10.5650/ios.ess13197

    Article  CAS  Google Scholar 

  • Tornvall U, Orellana-Coca C, Hatti-Kaul R, Adlercreutz D (2007) Stability of immobilized Candida antarctica lipase B during chemo-enzymatic epoxidation of fatty acids. Enzyme Microb Technol 40:447–451. doi:10.1016/j.enzmictec.2006.07.019

    Article  Google Scholar 

  • Vlcek T, Petrovic ZS (2006) Optimization of the chemoenzymatic epoxidation of soybean oil. J Am Oil Chem Soc 83:247–252. doi:10.1007/s11746-006-1200-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Technical Innovation Talent Funds in Henan University of Technology (No. 2013CXRC01), High Level Talent Funds of Henan University of Technology (No. 2013BS038) and the National Natural Science Foundation of China (No. 31601537).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingnan Chen or Wei Liu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhou, J., Liu, W. et al. Enzymatic epoxidation of soybean oil in the presence of perbutyric acid. Chem. Pap. 71, 2139–2144 (2017). https://doi.org/10.1007/s11696-017-0206-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0206-8

Keywords

Navigation