Skip to main content
Log in

Effect of the partial substitution of sulfur by selenium on the atomic arrangement in sulfate- and selenate-based compounds

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Two new co-based hybrid materials, (C4H12N2)[Co(H2O)6](S0.689Se0.311O4)2 (1) and (C4H12N2)[Co(H2O)6](S0.80Se0.20O4)2 (2), have been synthesized by slow evaporation method at room temperature and crystallographically characterized. They crystallizes isotypically in the monoclinic system, space group C2/c, with the following unit-cell parameters: a = 14.2559(19), b = 9.5066(13), c = 13.6759(19) Å, β = 114.930(4)°, V = 1680.7(4) Å3, and Z = 4 for (1) and a = 14.2235(19), b = 9.4901(14), c = 13.666(2) Å, β = 114.863(4)°, V = 1673.7(4) Å3, and Z = 4 for (2). Their crystal structure consist of metallic cations octahedrally coordinated by six water molecules [Co(H2O)6]2+, piperazinediium cations (C4H12N2)2+, and sulfate/selenate anions (S x Se1-x O4)2− linked together via two types of hydrogen bonds, Ow–H···O and N–H···O. The IR spectroscopic study confirms not only the substitution of the sulfur by the selenium but also the piperazine protonation. Through this work, it is demonstrated that the substitution of sulfur by selenium atom can lead to strong modification in the space group and atomic arrangement. Indeed the mixed selenate/sulfate compounds adopt a crystal structure different from those of the pure sulfate or selenate phases. The thermogravimetric measurement indicates that the dehydration occurs in two steps by the departure of six water molecules giving rise to an anhydrous phase. The final product of the decomposition is cobalt oxide, CoO, in both cases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Barna E, Bommer B, Kursteiner J, Vital A, Trzebiatowski OV, Koch W, Schmid B, Graule T (2005) Innovative, scratch proof nanocomposites for clear coatings. Compos Part A 36:473–480. doi:10.1016/j.compositesa.2004.10.014

    Article  Google Scholar 

  • Bataille T, Louër D (2002) Two new diamine templated lanthanum sulfates, La2(H2O)2(C4H12N2)(SO4)4 and La2(H2O)2(C2H10N2)3(SO4)6·4H2O, with 3D and 2D crystal structures. J Mater Chem 12:3487–3493. doi:10.1039/B207212M

    Article  CAS  Google Scholar 

  • Bataille T, Louër D (2004) New linear and layered amine-templated lanthanum sulfates. J Solid State Chem 177:1235–1243. doi:10.1016/j.jssc.2003.10.031

    Article  CAS  Google Scholar 

  • Ben Hassan D, Rekik W, Naïli H, Mhiri T (2014) A new organically templated magnesium sulfate: structure, spectroscopic analysis, and thermal behaviour. Chem Pap 68:210–216. doi:10.2478/s11696-013-0432-7

    Google Scholar 

  • Bhattacharya S, Dastidar P, Guru Row TN (1994) Hydrogen-bond-directed self-assembly of d-(+)-dibenzoyltartaric acid and 4-aminopyridine: optical nonlinearities and stoichiometry-dependent novel structural features. Chem Mater 6:531–537. doi:10.1021/cm00040a031

    Article  CAS  Google Scholar 

  • Brandenburg K (2004) Diamond, version 3.2i. Crystal Impact GbR, Bonn

    Google Scholar 

  • Bruker-AXS (2014) SAINT Version 8.34A. Bruker AXS Inc., Madison

    Google Scholar 

  • Cheetham AK, Férey G, Loiseau T (1999) Open-framework inorganic materials. Angew Chem Int Ed 38:3268–3292. doi:10.1002/(SICI)1521-3773(19991115)38:22<3268:AID-ANIE3268>3.0.CO;2-U

    Article  CAS  Google Scholar 

  • Dan M, Behera JN, Rao CNR (2004) Organically templated rare earth sulfates with three-dimensional and layered structures. J Mater Chem 14:1257–1265. doi:10.1039/B314663D

    Article  CAS  Google Scholar 

  • Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi:10.1021/cr030698+

    Article  CAS  Google Scholar 

  • Dastidar P, Guru Row TN, Prasad BR, Subramanian CK, Bhattacharya S (1993) Binary salts of substituted pyridines and l-tartaric acid as nonlinear optical organic materials: crystal structure of l-tartaric acid-4-dimethylaminopyridine (1:1) dihydrate salt. J Chem Soc Perkin Trans 2:2419–2422. doi:10.1039/P29930002419

    Article  Google Scholar 

  • Doran M, Norquist AJ, Hare DO (2002) The first organically templated actinide sulfate with a three dimensional framework structure. Chem Commun 26:2946–2947. doi:10.1039/B210272B

    Article  Google Scholar 

  • Galesié N, Jordanovsk VB (1992) Structures of dimethylammonium metal(III) sulfate hexahydrates (metal = Al, Cr). Acta Crystallogr Sect C 48:256–258. doi:10.1107/S0108270191009435

    Article  Google Scholar 

  • Holden AN, Matthias BT, Merz WJ, Remeika JP (1955) New class of ferroelectrics. Phys Rev 98:546. doi:10.1103/PhysRev.98.546

    Article  CAS  Google Scholar 

  • Hugh-Jones DA, Woodland AB, Angel RJ (1994) The structure of high-pressure C2/c ferrosilite and crystal chemistry of high-pressure C2/c pyroxene. Am Miner 79:1032–1041 (0003-004v94/I I I 2-1032$02.00)

    CAS  Google Scholar 

  • Kadirvelraj R, Umarji AM, Robinson WT, Bhattacharya S, Guru Row TN (1996) Systematic crystallographic investigation of hydrogen-bonded networks involving monohydrogen tartrate–amine complexes: potential materials for nonlinear optics. Chem Mater 8:2313–2323. doi:10.1021/cm960123b

    Article  CAS  Google Scholar 

  • Kadirvelraj R, Bhattacharya S, Guru Row TN (1998) Conserved hydrogen bonded tartrate frameworks: inclusion of amines and implications for second harmonic generation. J Inclusion Phenom Mol Recognit Chem 30:321–330. doi:10.1023/A:1007926112616

    Article  CAS  Google Scholar 

  • Kammoun O, Loulou Nkhili N, Rekik W, Naïli H, Mhiri T, Bataille T (2012) Synthesis, crystal structure and characterization of a new dabcodiium hexaaquacobalt(II) bis(Selenate), (C6H14N2) Co(H2O)6 (SeO4)2. Chem Crystallogr 42:103–110. doi:10.1007/s10870-011-0210-8

    Article  CAS  Google Scholar 

  • Kirpichnikov LF, Andreev EF, Ivanov NR, Shuvalov LA, Varikash VM (1988) Some physical-properties of a new dimethylaminaluminiumsulfate ferroelectric. Crystallogr Rep 33:1437–1440

    Google Scholar 

  • Kirpichnikov LF, Shuvalov LA, Ivanov NR, Prosolov BN, Andreyev EF (1989) Ferroelectricity in the dimethylaminaluminiumsulphate crystal. Ferroelectrics 96:313–317. doi:10.1080/00150198908216791

    Article  Google Scholar 

  • Krogman KC, Druffel T, Sunkara MK (2005) Anti-reflective optical coatings incorporating nanoparticles. Nanotechnology 16:S338–S343. doi:10.1088/0957-4484/16/7/005

    Article  Google Scholar 

  • Loulou N, Rekik W, Naïli H, Mhiri T, Bataille T (2013) Piperazinediium diselenatohexaaquacobaltate(II) dihydrate (C4H12N2)[Co(SeO4)2(H2O)4]·2H2O. Solid State Phenom 194:171–174. doi:10.4028/www.scientific.net/SSP.194.171

    Google Scholar 

  • Loulou N, Rekik W, Naïli H (2014) A new nickel selenate template by piperazine: chemical preparation, crystal structure, thermal decomposition and magnetic properties. Monatshafte für chemie 145:931–936

    Article  Google Scholar 

  • Morimoto CN, Lingafelter EC (1970) The crystal structure of zinc guanidinium sulfate. Acta Crystallogr B 26:335–341. doi:10.1107/S0567740870002364

    Article  CAS  Google Scholar 

  • Naïli H, Rekik W, Bataille T, Mhiri T (2006) Crystal structure, phase transition and thermal behaviour of dabcodiium hexaaquacopper(II) bis(sulfate), (C6H14N2)[Cu(H2O)6](SO4)2. Polyhedron 25:3543–3554. doi:10.1016/j.poly.2006.07.010

    Article  Google Scholar 

  • Nicole L, Roses L, Sanchez C (2011) Integrative approaches to hybrid multifunctional materials: from multidisciplinary research to applied technologies. Adv Mater 22:3208–3214. doi:10.1002/adma.201000231

    Article  Google Scholar 

  • Norquist A, Doran MB, Thomas PM, Hare DO (2003) Structural diversity in organically templated uranium sulfates. Dalton Trans 6:1168–1175. doi:10.1039/B209208E

    Article  Google Scholar 

  • Pan JX, Yang GY, Sun YQ (2003) Piperazinium hexaaquacobalt(II) disulfate. Acta crystallogr E59:m286–m288. doi:10.1107/S1600536803008407

    Google Scholar 

  • Pietraszko A, Lukaszewicz K, Kirpichnikov LF (1993) Crystal-structures of (CH3)2NH2AL(SO4)2.6H2O,(CH3)2NH2GA(SO4)2.6H2O, and (CH3)2NH2Al(S0.89Se0.11O4)2.6H2O. Polish J Chem 67:1877–1884

    CAS  Google Scholar 

  • Rekik W, Naïli H, Bataille T, Roisnel T, Mhiri T (2006) Supramolecular networks of transition metal sulfates templated by piperazine. Inorg Chim Acta 359:3954–3962. doi:10.1016/j.ica.2006.05.030

    Article  CAS  Google Scholar 

  • Rekik W, Naïli H, Mhiri T, Bataille T (2009) Ethylenediammonium tetraaquadisulfatomagnesium(II). Acta Crystallogr E 65:1404–1405. doi:10.1107/S1600536809041981

    Article  Google Scholar 

  • Rekik W, Naïli H, Mhiri T, Bataille T (2011) Ethylenediammonium tetraaquadisulfatocadmate: ethylenediammonium tetraaquadisulfatocadmate. Acta Crystallogr E67:1176–1177. doi:10.1107/S1600536811030005

    Google Scholar 

  • Ruiz-Valero C, Cascales C, Gomez-Lor B, Gutierrez-Puebla E, Iglesias M, Angeles Monge M, Snejko N (2002) New catalytically active neodymium sulfate. J Mater Chem 12:3073–3077. doi:10.1039/B205215F

    Article  CAS  Google Scholar 

  • Sanchez C (2005) Application of hybrid organic-inorganic nanonocomposites. J Mater Chem 15:3559–3592. doi:10.1039/B509097K

    Article  CAS  Google Scholar 

  • Sanchez C, Belleville P, Popall M, Nicole L (2011) Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40:696–753. doi:10.1039/C0CS00136H

    Article  CAS  Google Scholar 

  • Schotner G, Rose K, Posset U (2003) Scratch and abrasion resistant coatings on plastic lenses-state of the art, developments and perspectives. J Sol Gel Sci Technol 27:71–79. doi:10.1023/A:1022684011222

    Article  Google Scholar 

  • Sheldrick GM (2014) SADABS version 2014/5. Bruker AXS Inc., Madison

    Google Scholar 

  • Sheldrick GM (2015a) SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr A 71:3–8. doi:10.1107/S2053273314026370

    Article  Google Scholar 

  • Sheldrick GM (2015b) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3–8. doi:10.1107/S2053229614024218

    Article  Google Scholar 

  • Soloukhin VA, Posthums W, Brokken-Zijp JCM, Loos J, De with G (2002) Mechanical properties of silica-(meth(acrylate) hybrid coatings on polycarbonate substrate. Polymer 43:6169–6181. doi:10.1016/S0032-3861(02)00542-6

    Article  CAS  Google Scholar 

  • Takahashi S, Goldberg HA, Feeney CA, Kaim DP, Farrel MO, Leary K, Paul DR (2006) Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings. Polymer 47:3083–3093. doi:10.1016/j.polymer.2006.02.077

    Article  CAS  Google Scholar 

  • Wu LYL, Chwa E, Chen Z, Zeng XTA (2008) Study towards improving mechanical properties of sol gel coatings for polycarbonate. Thin Solid Films 516:1056–1062. doi:10.1016/j.tsf.2007.06.149

    Article  CAS  Google Scholar 

  • Xing Y, Liu Y, Shi Z, Meng H, Pang W (2003a) Synthesis and structure of organically templated lanthanum sulfate [C4N3H16][La(SO4)3]·H2O. J Solid State Chem 174:381–385. doi:10.1016/S0022-4596(03)00255-X

    Article  CAS  Google Scholar 

  • Xing Y, Shi Z, Li G, Pang W (2003b) Hydrothermal synthesis and structure of [C2N2H10][La2(H2O)4(SO4)4]·2H2O, a new organically templated rare earth sulfate with a layer structure. Dalton Trans 5:940–943. doi:10.1039/B211076H

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Rekik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 90 kb)

Supplementary material 2 (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadri, I., Derbel, M.A., Naïli, H. et al. Effect of the partial substitution of sulfur by selenium on the atomic arrangement in sulfate- and selenate-based compounds. Chem. Pap. 71, 2063–2073 (2017). https://doi.org/10.1007/s11696-017-0199-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0199-3

Keywords

Navigation