Skip to main content
Log in

The conjugate base of malonaldehyde as antenna-ligand towards trivalent europium and terbium ions

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Coordination compounds having formulae [M(MA)3] n and M(MA)(Me2Tp)2 (M = Y, Eu, Tb; MA = conjugate base of malonaldehyde; Me2Tp = tris(3,5-dimethyl-pyrazol-1-yl)borate) were synthesized and characterized. The photoluminescence features of the europium and terbium derivatives were investigated. By comparing the herein reported photoluminescence data with those relative to analogous nitro- and bromomalonaldehyde derivatives, it appears that the conjugate base of malonaldehyde is a more efficient antenna-ligand for the sensitization of Tb(III) luminescence. The experimental data were rationalized on the basis of DFT calculations. Tb(MA)(Me2Tp)2 was used as dopant for the preparation of luminescent plastic materials based on poly(methyl methacrylate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed Z, Aderne RE, Kai J, Resende JALC, Cremona M (2016) Synthesis and NIR-optoelectronic properties of a seven-coordinate ytterbium tris β-diketonate complex with C3v geometrical structure. Polyhedron 117:518–525. doi:10.1016/j.poly.2016.06.024

    Article  CAS  Google Scholar 

  • Andreiadis ES, Gauthier N, Imbert D, Demadrille R, Pécaut J, Mazzanti M (2013) Lanthanide complexes based on β-diketonates and a tetradentate chromophore highly luminescent as powders and in polymers. Inorg Chem 52:14382–14390. doi:10.1021/ic402523v

    Article  CAS  Google Scholar 

  • Armarego WLF, Perrin DD (1996) Purification of laboratory chemicals, 4th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Bagryanskaya IY, Politanskaya LV, Tretyakov EV (2016) Frequently used, but still unknown: terbium(III) tris-hexafluoroacetylacetonate dihydrate. Inorg Chem Commun 66:47–50. doi:10.1016/j.inoche.2016.02.009

    Article  CAS  Google Scholar 

  • Baxter I, Drake SR, Hursthouse MB, Malik KMA, McAleese J, Otway DJ, Plakatouras JC (1995) Effect of polyether ligands on stabilities and mass transport properties of a series of gadolinium(III) β-diketonate complexes. Inorg Chem 34:1384–1394

    Article  CAS  Google Scholar 

  • Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. doi:10.1063/1.464913

    Article  CAS  Google Scholar 

  • Bergner A, Dolg M, Kuechle W, Stoll H, Preuss H (1993) Ab-initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol Phys 80:1431–1441. doi:10.1080/00268979300103121

    Article  CAS  Google Scholar 

  • Binnemans K (2005) Rare earths beta diketonates. In: Gschneidner KA Jr, Bünzli J-CG, Pecharsky VK (eds) Handbook on the physics and chemistry of rare earths, vol 35. Elsevier, Amsterdam, pp 107–272 (Chapter 225)

    Google Scholar 

  • Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109:4283–4374. doi:10.1021/cr8003983

    Article  CAS  Google Scholar 

  • Binnemans K (2015) Interpretation of europium(III) spectra. Coord Chem Rev 295:1–45. doi:10.1016/j.ccr.2015.02.015

    Article  CAS  Google Scholar 

  • Bortoluzzi M, Paolucci G, Polizzi S, Bellotto L, Enrichi F, Ciorba S, Richards BS (2011) Photoluminescence studies on europium-based scorpionate-complex. Inorg Chem Commun 14:1762–1766. doi:10.1016/j.inoche.2011.08.004

    Article  CAS  Google Scholar 

  • Bortoluzzi M, Paolucci G, Gatto M, Roppa S, Enrichi F, Ciorba S, Richards BS (2012) Preparation of photoluminescent PMMA doped with tris(pyrazol-1-yl)borate lanthanide complexes. J Lumin 132:2378–2384. doi:10.1016/j.jlumin.2012.04.005

    Article  CAS  Google Scholar 

  • Bortoluzzi M, Battistel D, Roppa S, Daniele S, Perosa A, Enrichi F (2014a) Yttrium and lanthanide complexes of β-dialdehydes: synthesis, characterization, luminescence and electrochemistry of coordination compounds with the conjugate base of bromomalonaldehyde. Dalton Trans 43:9303–9312. doi:10.1039/C4DT00644E

    Article  CAS  Google Scholar 

  • Bortoluzzi M, Bianchin E, Roppa S, Bertolasi V, Enrichi F (2014b) Yttrium and lanthanide complexes of β-dialdehydes: synthesis, characterization and luminescence of coordination compounds with the conjugate base of nitromalonaldehyde. Dalton Trans 43:10120–10131. doi:10.1039/C4DT00643G

    Article  CAS  Google Scholar 

  • Bortoluzzi M, Reolon A, Castro J, Enrichi F, Albertin G, Bragato C (2016) The conjugate base of methyl 3-oxobutanoate as an antenna ligand in visible-emitting photoluminescent lanthanide complexes. RSC Adv 6:32727–32739. doi:10.1039/C6RA01741J

    Article  CAS  Google Scholar 

  • Bruno SM, Ferreira RAS, Almeida Paz FA, Carlos LD, Pillinger M, Ribeiro-Claro P, Gonçalves IS (2009) Structural and photoluminescence studies of a europium(III) tetrakis(β-diketonate) complex with tetrabutylammonium, imidazolium, pyridinium and silica-supported imidazolium counterions. Inorg Chem 48:4882–4895. doi:10.1021/ic900274a

    Article  CAS  Google Scholar 

  • Buczko K, Karbowiak M (2013) Colour-tuneable double-layer polymeric films doped with lanthanide β-diketonate complexes. J Lumin 143:241–253. doi:10.1016/j.jlumin.2013.04.013

    Article  CAS  Google Scholar 

  • Bünzli J-CG, Comby S, Chauvin A-S, Vandevyver CDB (2007) New opportunities for lanthanide luminescence. J Rare Earths 25:257–274. doi:10.1016/S1002-0721(07)60420-7

    Article  Google Scholar 

  • Bünzli J-CG, Chauvin A-S, Kim HK, Deiters E, Eliseeva SV (2010) Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: role of the radiative lifetime. Coord Chem Rev 254:2623–2633. doi:10.1016/j.ccr.2010.04.002

    Article  Google Scholar 

  • Cao X, Dolg M (2001) Valence basis sets for relativistic energy-consistent small-core lanthanide pseudopotentials. J Chem Phys 115:7348–7355. doi:10.1063/1.1406535

    Article  CAS  Google Scholar 

  • Collman JP, Kittleman ET (1961) Reactions of metal chelates. II. Synthesis of the chromium(III) chelates of malonaldehyde and formylacetone. J Am Chem Soc 83:3529–3530. doi:10.1021/ja01477a040

    Article  CAS  Google Scholar 

  • Cotton S (2005) Scandium, yttrium, and the lanthanides. In: Parkin GFR (ed) Comprehensive coordination chemistry II, vol 3. Elsevier, Amsterdam, pp 135–138

    Google Scholar 

  • Dar WA, Iftikhar K (2016) Phase controlled colour tuning of samarium and europium complexes and excellent photostability of their PVA encapsulated materials. Structural elucidation, photophysical parameters and the energy transfer mechanism in the Eu3+ complex by Sparkle/PM3 calculations. Dalton Trans 45:8956–8971. doi:10.1039/C6DT00549G

    Article  CAS  Google Scholar 

  • Dunning TH Jr, Hay PJ (1977) Gaussian basis sets for molecular calculations. In: Schaefer HF III (ed) Modern theoretical chemistry, vol 3. Plenum, New York, pp 1–28

    Google Scholar 

  • Eliseeva SV, Bünzli J-CG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39:189–227. doi:10.1039/B905604C

    Article  CAS  Google Scholar 

  • Erasmus CS, Boeyens JCA (1970) Crystal structure of the praseodymium β-diketonate of 2,2,6,6-tetra-methyl-3,5-heptanedione, Pr2(thd)6. Acta Cryst B26:1843–1854. doi:10.1107/S0567740870004983

    Article  Google Scholar 

  • Francis B, Ambili Raj DB, Reddy MLP (2010) Highly efficient luminescent hybrid materials covalently linking with europium(III) complexes via a novel fluorinated β-diketonate ligand: synthesis, characterization and photophysical properties. Dalton Trans 39:8084–8092. doi:10.1039/C0DT00316F

    Article  CAS  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian Inc., Wallingford

    Google Scholar 

  • Gheno G, Bortoluzzi M, Ganzerla R, Enrichi F (2014) Inorganic pigments doped with tris(pyrazol-1-yl)borate lanthanide complexes: a photoluminescence study. J Lumin 145:963–969. doi:10.1016/j.jlumin.2013.09.027

    Article  CAS  Google Scholar 

  • Kawashita Kuya M, Serra OA, Lakatos Osorio VK (1975) Hexafluorophosphate as a non-coordinating anion in lanthanide complexes—I. Dimethyl sulfoxide complexes. J Inorg Nucl Chem 37:1998–1999. doi:10.1016/0022-1902(75)80935-3

    Article  Google Scholar 

  • Kisel KS, Linti G, Starova GL, Sizov VV, Melnikov AS, Pushkarev AP, Bochkarev MN, Grachova EV, Tunik SP (2015) Syntheses, structures, and photophysical properties of Eu and Lu diketonates with a neutral polydentate imidazolylmethanamine ligand. Eur J Inorg Chem. doi:10.1002/ejic.201403186

    Google Scholar 

  • Krishnamurthy VN, Soundararajan S (1967) Dimethyl sulphoxide complexes of rare-earth perchlorates. J Inorg Nucl Chem 29:517–521. doi:10.1016/0022-1902(67)80056-3

    Article  CAS  Google Scholar 

  • Latva M, Takalo H, Mukkala V-M, Matachescu C, Rodríguez-Ubis Kankare J (1997) Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield. J Lumin 75:149–169. doi:10.1016/S0022-2313(97)00113-0

    Article  CAS  Google Scholar 

  • Li Q-P, Yan B (2012) Luminescent hybrid materials of lanthanide β-diketonate and mesoporous host through covalent and ionic bonding with anion metathesis. Dalton Trans 41:8567–8574. doi:10.1039/C2DT30364G

    Article  CAS  Google Scholar 

  • Liu S, Maunder GH, Sella A, Stevenson M, Tocher DA (1996) Synthesis and molecular structures of hydrotris(dimethylpyrazolyl)borate complexes of the lanthanides. Inorg Chem 35:76–81. doi:10.1021/ic941469w

    Article  CAS  Google Scholar 

  • Liu S, He P, Wang H, Shi J, Gong M (2010) A luminescent dinuclear Eu(III) complex based on 2,8-bis(4′,4′,4′,-trifluoro-1′,3′-dioxobutyl)-dibenzothiophene for light-emitting diodes. J Lumin 130:855–858. doi:10.1016/j.jlumin.2009.12.013

    Article  CAS  Google Scholar 

  • Ma Y, Wang Y (2010) Recent advances in the sensitized luminescence of organic europium complexes. Coord Chem Rev 254:972–990. doi:10.1016/j.ccr.2010.02.013

    Article  CAS  Google Scholar 

  • Marques N, Sella A, Takats J (2002) Chemistry of the lanthanides using pyrazolylborate ligands. Chem Rev 102:2137–2159. doi:10.1021/cr010327y

    Article  CAS  Google Scholar 

  • Milanov AP, Seidel RW, Barreca D, Gasparotto A, Winter M, Feydt J, Irsen S, Becker H-W, Devi A (2011) Malonate complexes of dysprosium: synthesis, characterization and application for LI-MOCVD of dysprosium containing thin films. Dalton Trans 40:62–78. doi:10.1039/C0DT00455C

    Article  CAS  Google Scholar 

  • Moudam O, Rowan BC, Alamiry M, Richardson P, Richards BS, Jones AC, Robertson N (2009) Europium complexes with high total photoluminescence quantum yields in solution and in PMMA. Chem Commun. doi:10.1039/B914978C

    Google Scholar 

  • Ramalingam SK, Soundararajan S (1967) Dimethyl sulphoxide complexes of lanthanide and yttrium nitrates. J Inorg Nucl Chem 29:1763–1768. doi:10.1016/0022-1902(67)80220-3

    Article  CAS  Google Scholar 

  • Reger DL, Lindeman JA, Lebioda L (1988) Tris(pyrazoly1)borate complexes of tttrium. X-ray crystal structures of [HB(Pz)3]2YCI(Hpz) and {[HB(pz)3]Y(μ-O2CCH3)2}2 (pz = pyrazolyl ring). Inorg Chem 27:3923–3929. doi:10.1021/ic00295a010

    Article  CAS  Google Scholar 

  • Solodukhin NN, Utochnikova VV, Lepnev LS, Kuzmina NP (2014) Mixed-ligand terbium hydroxyaromatic carboxylates with o-phenanthroline: luminescence quenching at 300 and 77 K. Mendeleev Commun 24:91–93. doi:10.1016/j.mencom.2014.03.008

    Article  CAS  Google Scholar 

  • Tan C, Wang Q (2011) Photophysical studies of novel lanthanide (Eu3+ and Tb3+) luminescent hydrogels. Inorg Chem Commun 14:515–518. doi:10.1016/j.inoche.2011.01.006

    Article  CAS  Google Scholar 

  • Trofimenko S (1967) Boron-pyrazole chemistry. IV. Carbon- and boron-substituted poly[(1-pyrazolyl) borates]. J Am Chem Soc 89:6288–6294. doi:10.1021/ja01000a053

    Article  CAS  Google Scholar 

  • Tver’yanovich YS (2003) Concentration quenching of luminescence of rare-earth ions in chalcogenide glasses. Glass Phys Chem 29:166–168. doi:10.1023/A:1023407125519

    Article  Google Scholar 

  • Ullrich CA (2012) Time-dependent density-functional theory. Oxford University Press, Oxford, pp 45–210

    Google Scholar 

  • Usha Gangan TV, Sreenadh S, Reddy MLP (2016) Visible-light excitable highly luminescent molecular plastic materials derived from Eu3+-biphenyl based β-diketonate ternary complex and poly(methylmethacrylate). J. Photoch Photobio A 328:171–181. doi:10.1016/j.jphotochem.2016.06.005

    Article  Google Scholar 

  • Vázquez-Ibar JL, Weinglass AB, Kaback HR (2002) Engineering a terbium-binding site into an integral membrane protein for luminescence energy transfer. Proc Natl Acad Sci USA 99:3487–3492. doi:10.1073/pnas.052703599

    Article  Google Scholar 

  • Verlan VI, Iovu MS, Culeac I, Nistor YH, Turta CI, Zubareva VE (2013) Photoluminescence properties of PVP/Tb(TTA)2(Ph3PO)2NO3 nanocomposites. J Non Cryst Solids 360:21–25. doi:10.1016/j.jnoncrysol.2012.10.005

    Article  CAS  Google Scholar 

  • Xu Q, Zhiqiang L, Wang Y, Li H (2016) Temperature-dependent luminescence properties of lanthanide(III) β-diketonate complex-doped LAPONITE®. Photochem Photobiol Sci 15:405–411. doi:10.1039/C5PP00413F

    Article  CAS  Google Scholar 

  • Yuan F, Li T, Li L, Zhou Y (2012) Polymerization of ɛ-caprolactone by lanthanide trisborohydrides and crystal structure of [Ce(BH4)2(THF)5][Ce(BH4)4(THF)2]. J Rare Earths 30:753–756. doi:10.1016/S1002-0721(12)60124-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ca’ Foscari University of Venice is gratefully acknowledged for financial support (Progetti di Ateneo 2014). F.E. acknowledges the PLESC project “Plasmonics for a better efficiency of solar cells” between South Africa and Italy (“Contributo del Ministero degli Affari Esteri e della Cooperazione Internazionale, Direzione Generale per la Promozione del Sistema Paese”) and VINNOVA, the Swedish Government Agency for Innovation, under the Vinnmer Marie Curie Incoming—Mobility for Growth Programme (project “Nano2solar” Ref. N.2016-02011). We are indebted with one of the anonymous referees who suggested the experiment relative to [Y0.9Eu0.1(MA)3] n .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bortoluzzi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortoluzzi, M., Reolon, A., Scrivanti, A. et al. The conjugate base of malonaldehyde as antenna-ligand towards trivalent europium and terbium ions. Chem. Pap. 72, 809–819 (2018). https://doi.org/10.1007/s11696-017-0182-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0182-z

Keywords

Navigation