Skip to main content
Log in

Exploration of some indole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In our search for novel small molecules targeting histone deacetylases, we have designed and synthesized a series of novel hydroxamic acids incorporating indole moiety as a cap group (3al). Biological evaluation showed that these hydroxamic acids potently inhibited HDAC2 with IC50 values in submicromolar range and up to tenfold (compound 3j) better than that of SAHA (also known as suberoylanilide hydroxamic acid). In four human cancer cell lines [SW620 (colon), PC-3 (prostate), AsPC-1 (pancreatic), NCI-H23 (lung)], the synthesized compounds that exhibited potent cytotoxicity with several compounds (3k, 3l) were found to be 12- to 77-fold more cytotoxic than SAHA. Docking experiments indicated that the compounds tightly bound to HDAC2 at the active binding site with binding affinities much higher than that of SAHA. Our present results demonstrate that these novel hydroxamic acids are potential for further development as anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784. doi:10.1038/nrd2133

    Article  CAS  Google Scholar 

  • Bracker TU, Sommer A, Fichtner I, Faus H, Haendler B, Hess-Stumpp H (2009) Efficacy of MS-275, a selective inhibitor of class I histone deacetylases, in human colon cancer models. Int J Oncol 35:909–920. doi:10.3892/ijo_00000406

    CAS  Google Scholar 

  • Cheng YC (2015) Beware of docking! Trends Pharmacol Sci 36:78–95. doi:10.1016/j.tips.2014.12.001

    Article  CAS  Google Scholar 

  • Cheng T, Grasse L, Shah J, Chandra J (2015) Panobinostat, a pan-histone deacetylase inhibitor: rationale for and application to treatment of multiple myeloma. Drugs Today (Barc) 51:491–504. doi:10.1358/dot.2015.51.8.2362311

    Article  CAS  Google Scholar 

  • Dallavalle S, Cincinelli R, Nannei R, Merlini L, Morini G, Penco S, Pisano C, Vesci L, Barbarino M, Zuco V, De Cesare M, Zunino F (2009) Design, synthesis, and evaluation of biphenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Eur J Med Chem 44:1900–1912. doi:10.1016/j.ejmech.2008.11.005

    Article  CAS  Google Scholar 

  • De Ruijter AJM, Gennip AHV, Caron HN, Kemp S, Kuilenburg ABPV (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–739. doi:10.1042/BJ20021321

    Article  Google Scholar 

  • Glaser KB (2007) HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol 74:659–671. doi:10.1016/j.bcp.2007.04.007

    Article  CAS  Google Scholar 

  • Hamm CA, Costa FF (2015) Epinomes as therapeutic targets. Pharmacol Ther 151:72–86. doi:10.1016/j.pharmthera.2015.03.003

    Article  CAS  Google Scholar 

  • Huang S-Y, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11:3016–3034. doi:10.3390/ijms11083016

    Article  CAS  Google Scholar 

  • Huong TTL, Dung DTM, Huan NV, Cuong LV, Hai PT, Huong LTT, Kim J, Kim YG, Han SB, Nam NH (2017) Novel N-hydroxybenzamides incorporating 2-oxoindoline with unexpected potent histone deacetylase inhibitory effects and antitumor cytotoxicity. Bioorg Chem. doi: 10.1016/j.bioorg.2017.02.002 (in press)

  • Iyer SP, Foss FF (2015) Romidepsin for the treatment of peripheral T-cell lymphoma. Oncologist 20:1084–1091. doi:10.1634/theoncologist.2015-0043

    Article  CAS  Google Scholar 

  • Khandelwal A, Lukacova V, Comez D, Kroll DM, Raha S, Balaz S (2015) A combination of docking, QM/MM methods, and MD simulation for binding affinity estimation of metalloprotein ligands. J Med Chem 48:437–447. doi:10.1021/jm049050v

    Google Scholar 

  • Lauffer BE, Mintzer R, Fong R, Mukund S, Tam C, Zilberleyb I, Flicke B, Ritscher A, Fedorowicz G, Vallero R, Ortwine DF, Gunzner J, Modrusan Z, Neumann L, Koth CM, Lupardus PJ, Kaminker JS, Heise CE, Steiner P (2013) Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J Biol Chem 288:26926–26943. doi:10.1074/jbc.M113.490706

    Article  CAS  Google Scholar 

  • Li J, Li G, Xu X (2013) Histone deacetylase inhibitors: an attractive strategy for cancer therapy. Curr Med Chem 20:1858–1886. doi:10.1074/jbc.M113.490706

    Article  CAS  Google Scholar 

  • Malini G (2015) HDAC inhibitors still need a home run, despite recent approval. Nat Rev Drug Discov 14:225–226. doi:10.1038/nrd4583

    Article  Google Scholar 

  • Nam NH, Parang K (2003) Current targets for anticancer drugs discovery. Curr Drug Targets 4:159–179. doi:10.2174/1389450033346966

    Article  CAS  Google Scholar 

  • Nam NH, Lee C-W, Hong D-H, Kim H-M, Bae K-H, Ahn B-Z (2003) Antiinvasive, antiangiogenic and antitumour activity of Ephedra sinica extract. Phytother Res 17:70–76. doi:10.1002/ptr.901

    Article  Google Scholar 

  • Nam NH, Huong TL, Dung DTM, Oanh DTK, Dung PTP, Quyen D, Kim KR, Han BW, Kim YS, Hong JT, Han SB (2013) Novel isatin-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. Eur J Med Chem 70:477–486. doi:10.1016/j.ejmech.2013.10.045

    Article  CAS  Google Scholar 

  • Nam NH, Huong TL, Dung DTM, Oanh DTK, Dung PTP, Kim KR, Han BW, Kim YS, Hong JT, Han SB (2014) Synthesis, bioevaluation and docking study of 5-substitutedphenyl-1,3,4-thiadiazole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. J Enzyme Inhib Med Chem 29:611–618. doi:10.1016/j.ejmech.2013.10.045

    Article  CAS  Google Scholar 

  • Oanh DTK, Hai HV, Hue VTM, Park SH, Kim HJ, Han BW, Kim HS, Hong JT, Han SB, Nam NH (2011) Benzothiazole-containing hydroxamic acids as histone deacetylase inhibitors and antitumor agents. Bioorg Med Chem Lett 21:7509–7512. doi:10.1016/j.bmcl.2011.07.124

    Article  CAS  Google Scholar 

  • Pelzel HR, Schlamp CL, Nickells RW (2010) Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis. BMC Neurosci 11:62. doi:10.1186/1471-2202-11-62

    Article  Google Scholar 

  • Qiu T, Zhou L, Zhu W, Wang T, Wang J, Shu Y, Liu P (2013) Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials. Future Oncol 9:255–269. doi:10.2217/fon.12.173

    Article  CAS  Google Scholar 

  • Ramírez D, Caballero J (2016) Is it reliable to use common molecular docking methods for comparing the binding affinities of enantiomer pairs for their protein target? Int J Mol Sci 17:E525. doi:10.3390/ijms17040525

    Article  Google Scholar 

  • Schuttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 60:1355–1363. doi:10.1107/S0907444904011679

    Article  Google Scholar 

  • Skehan P, Storeng R, Scudiero D, Monk A, MacMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer drug screening. J Natl Cancer Inst 82:1107–1112. doi:10.1093/jnci/82.13.1107

    Article  CAS  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. doi:10.1002/jcc.21334

    CAS  Google Scholar 

  • Tung TT, Oanh DT, Dung PT, Hue VT, Park SH, Han BW, Kim Y, Hong JT, Han SB, Nam NH (2013) New benzothiazole/thiazole-containing hydroxamic acids as potent histone deacetylase inhibitors and antitumor agents. Med Chem 9:1051–1057. doi:10.2174/15734064113099990027

    Article  CAS  Google Scholar 

  • Valente S, Mai A (2014) Small-molecule inhibitors of histone deacetylase for the treatment of cancer and non-cancer diseases: a patent review (2011–2013). Expert Opin Ther Pat 24:401–415. doi:10.1517/13543776.2014.877446

    Article  CAS  Google Scholar 

  • Vanommeslaeghea K, Loverixb S, Geerlings P, Tourwéa D (2005) DFT-based ranking of zinc-binding groups in histone deacetylase inhibitors. Bioorg Med Chem 13:6070–7082. doi:10.1016/j.bmc.2005.06.009

    Article  Google Scholar 

  • Ververis K, Hiong A, Karagiannis TC, Licciardi PV (2013) Histone deacetylase inhibitors (HDACIs): multitargeted anticancer agents. Biologics 7:47–60. doi:10.2147/BTT.S29965

    CAS  Google Scholar 

  • West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Investig 124:30–39. doi:10.1172/JCI69738

    Article  CAS  Google Scholar 

  • Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: what are the cancer relevant targets? Cancer Lett 277:8–21. doi:10.1016/j.canlet.2008.08.016

    Article  CAS  Google Scholar 

  • Wu L, Smythe AM, Stinson SF, Mullendore LA, Monks A, Scudiero DA, Paull KD, Koutsoukos AD, Rubinstein LV, Boyd MR, Shoemaker RH (1992) Multidrug-resistant phenotype of disease-oriented panels of human tumor cell lines used for anticancer drug screening. Can Res 52:3029–3034. doi:10.1016/j.canlet.2008.08.016

    CAS  Google Scholar 

  • Wu R, Lu Z, Cao Z, Zhang Y (2011) Zinc chelation with hydroxamate in histone deacetylases modulated by water access to the linker binding channel. J Am Chem Soc 133:6110–6113. doi:10.1021/ja111104p

    Article  CAS  Google Scholar 

  • Ye G, Nam NH, Kumar A, Saleh A, Shenoy DB, Amiji MM, Lin X, Sun G, Parang K (2007) Synthesis and evaluation of tripodal peptide analogues for cellular delivery of phosphopeptides. J Med Chem 50:3604–3617. doi:10.1021/jm070416o

    Article  CAS  Google Scholar 

  • You YJ, Kim Y, Nam NH, Ahn BZ (2003) Antitumor activity of unsaturated fatty acid esters of 4′-demethyldeoxypodophyllotoxin. Bioorg Med Chem Lett 13:2629–2632. doi:10.1016/S0960-894X(03)00558-4

    Article  CAS  Google Scholar 

  • Zwergel C, Valente S, Jacob C, Mai A (2015) Emerging approaches for histone deacetylase inhibitor drug discovery. Expert Opin Drug Discov 10:599–613. doi:10.1517/17460441.2015.1038236

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the principal financial supports from the National Foundation for Science and Technology of Vietnam (NAFOSTED, Grant Number 104.01-2015.08). This work was also partly supported by the Grant Number 104.01-2014.55 (from NAFOSTED), the Korean Medical Research Center program (Grant Number 2008-0062275), and a small Grant from Hanoi University of Pharmacy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang-Bae Han or Nguyen-Hai Nam.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 291 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huong, T.T.L., Van Cuong, L., Huong, P.T. et al. Exploration of some indole-based hydroxamic acids as histone deacetylase inhibitors and antitumor agents. Chem. Pap. 71, 1759–1769 (2017). https://doi.org/10.1007/s11696-017-0172-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0172-1

Keywords

Navigation