Skip to main content
Log in

pH-sensitive N,N-(dimethyl)-N-alkanamine-N-oxides as gene delivery vectors

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

N,N-(Dimethyl)-N-alkanamine-N-oxides C n NO (n = 12 and 16) are amphiphiles that exist in neutral as well as in cationic forms depending on pH of aqueous solutions. C n NO with a neutral lipid DOPE (dioleoylphosphatidylethanolamine) can form liposomes with positive surface charge in acidic pH solution. C n NO/DOPE (n = 12 and 16) liposomes were used for preparation of DNA delivery vectors. Small-angle X-ray diffraction (SAXD) was used to determine the structure of C n NO/DOPE/DNA complexes prepared at various pH and 20 °C. At acidic pH, we observe a condensed lamellar phase LC with DNA strands packed regularly. With increasing pH, a coexistence of two lamellar phases is recognized. The amount of DNA bound into C n NO/DOPE/DNA complexes shows significant dependence on pH as derived from UV/Vis spectroscopy. Up to ~99% of total DNA was complexed at acidic pH. The cytotoxicity of C12NO/DOPE for HepG2 cells at acidic pH is low as determined by Janus Green Staining Assay.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad A, Evans HM, Ewert K, George CX, Samuel CE, Safinya CR (2005) New multivalent cationic lipids reveal bell curve for transfection efficiency versus membrane charge density: lipid–DNA complexes for gene delivery. J Gene Med 7:739–748. doi:10.1002/jgm.717

    Article  CAS  Google Scholar 

  • Al-Dosari MS, Gao X (2009) Nonviral gene delivery: principle, limitations, and recent progress. AAPS J 11:671–681. doi:10.1208/s12248-009-9143-y

    Article  CAS  Google Scholar 

  • Balgavý P, Devínsky F (1996) Cut-off effects in biological activities of surfactants. Adv Colloid Interfac 66:23–63. doi:10.1016/0001-8686(96)00295-3

    Article  Google Scholar 

  • Barlow DJ, Lawrence MJ, Zuberi T, Zuberi S, Heenan RK (2000) Small-angle neutron-scattering studies on the nature of the incorporation of polar oils into aggregates of N,N-dimethyldodecylamine-N-oxide. Langmuir 16:10398–10403. doi:10.1021/la0002233

    Article  CAS  Google Scholar 

  • Belička M, Kučerka N, Uhríková D, Islamov AK, Kuklin AI, Devínsky F, Balgavý P (2014) Effects of N,N-dimethyl-N-alkylamine-N-oxides on DOPC bilayers in unilamellar vesicles: small-angle neutron scattering study. Eur Biophys J 43:179–189. doi:10.1007/s00249-014-0954-0

    Article  Google Scholar 

  • Birnie CR, Malamud D, Schnaare RL (2000) Antimicrobial evaluation of N-alkyl betaines and N-alkyl-N,N-dimethylamine oxides with variations in chain length. Antimicrob Agents Chemother 44:2514–2517

    Article  CAS  Google Scholar 

  • Bonincontro A, Marchetti S, Onori G, Santucci A (2003) Complex formation between DNA and dodecyl-dimethyl-amine-oxide induced by pH. Chem Phys Lett 370:387–392. doi:10.1016/S0009-2614(03)00074-5

    Article  CAS  Google Scholar 

  • Budker V, Gurevich V, Hagstrom JE, Bortzov F, Wolff JA (1996) pH-sensitive, cationic liposomes: a new synthetic virus-like vector. Nat Biotechnol 14:760–764. doi:10.1038/nbt0696-760

    Article  CAS  Google Scholar 

  • Bukovský M, Mlynarčik D, Ondráčková V (1996) Immunomodulatory activity of amphiphilic antimicrobials on mouse macrophages. Int J Immunopharmacol 18:423–426. doi:10.1016/S0192-0561(96)00040-9

    Article  Google Scholar 

  • Caracciolo G, Marchini C, Pozzi D, Caminiti R, Amenitsch H, Montani M, Amici A (2007) Structural stability against disintegration by anionic lipids rationalizes the efficiency of cationic liposome/DNA complexes. Langmuir 23:4498–4508. doi:10.1021/la063456o

    Article  CAS  Google Scholar 

  • Cooperstein SJ, Lazarow A, Patterson JW (1953) Studies on the mechanism of Janus Green B staining of mitochondria. Exp Cell Res 5:69–82. doi:10.1016/0014-4827(53)90095-0

    Article  CAS  Google Scholar 

  • Devínsky F (1985) Amine oxides XVII. Nonaromatic amine oxides: their use in organic syntheses and industry. Acta Fac Pharm Univ Comen 40:63–83

    Google Scholar 

  • Devínsky F, Lacko I, Nagy A, Krasnec Ľ (1978) Amine oxides. I. Synthesis, 1Hn.m.r., and infrared spectra of 4-alkylmorpholine-N-oxides. Chem Pap 32:106–115

    Google Scholar 

  • Devínsky F, Kopecka-Leitmanová A, Sersen F, Balgavý P (1990) Cut-off effect in antimicrobial activity and in membrane perturbation efficiency of the homologous series of N,N-dimethylalkylamine oxides. J Pharm Pharmacol 42:790–794

    Article  Google Scholar 

  • Dubničková M, Kiselev M, Kutuzov S, Devínsky F, Gordeliy V, Balgavý P (1997) Effect of N-lauryl-N,N-dimethylamine N-oxide on dimyristoyl phosphatidylcholine bilayer thickness: a small-angle neutron scattering study. Gen Physiol Biophys 16:175–188

    Google Scholar 

  • Ewert K, Ahmad A, Evans HM, Schmidt HW, Safinya CR (2002) Efficient synthesis and cell-transfection properties of a new multivalent cationic lipid for nonviral gene delivery. J Med Chem 45:5023–5029

    Article  CAS  Google Scholar 

  • Ewert K, Ahmad A, Evans HM, Safinya CR (2005) Cationic lipid–DNA complexes for non-viral gene therapy: relating supramolecular structures to cellular pathways. Expert Opin Biol Ther 5:33–53. doi:10.1517/14712598.5.1.33

    Article  CAS  Google Scholar 

  • Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    Article  CAS  Google Scholar 

  • Fukunaga E, Ohiwa Y, Yamada M, Sumi A, Saton M, Oyama Y (2014) Effects of N,N-dimethyldodecylamine-N-oxide on some cellular parameters of rat thymocytes. Nat Sci Res 28:21–24

    Google Scholar 

  • Goracci L, Germani R, Savelli G, Bassani DM (2005) Hoechst 33258 as a pH-sensitive probe to study the interaction of amine oxide surfactants with DNA. Eur J Chem Biol 6:197–203. doi:10.1002/cbic.200400196

    CAS  Google Scholar 

  • Herrmann KW (1964) Micellar properties and phase separation in dimethyldodecylamine oxide-sodium halide-water systems. J Phys Chem 68:1540–1546. doi:10.1021/j100788a047

    Article  CAS  Google Scholar 

  • Hirko A, Tang F, Hughes JA (2003) Cationic lipid vectors for plasmid DNA delivery. Curr Med Chem 10:1185–1193

    Article  CAS  Google Scholar 

  • Hubčík L, Funari SS, Pullmannová P, Devínsky F, Uhríková D (2015) Stimuli responsive polymorphism of C12NO/DOPE/DNA complexes: effect of pH, temperature and composition. Biochim Biophys Acta 1848:1127–1138. doi:10.1016/j.bbamem.2015.01.020

    Article  Google Scholar 

  • Hui SW, Langner M, Zhao YL, Ross P, Hurley E, Chan K (1996) The role of helper lipids in cationic liposome-mediated gene transfer. Biophys J 71:590–599. doi:10.1016/S0006-3495(96)79309-8

    Article  CAS  Google Scholar 

  • Kacáni L, Ferencík M, Devínský F, Dierich MP (1996) Immunomodulatory effect of some amphiphilic detergents on the human promyelocytic HL-60 cells. Folia Biol Prague 42:11–16

    Google Scholar 

  • Kakehashi R, Yamamura S, Tokai N, Takeda T, Kaneda K, Yoshinaga K, Maeda H (2001) Hydrogen ion titration of long alkyl chain amine oxide micelles. J Colloid Interf Sci 243:233–240. doi:10.1006/jcis.2001.7884

    Article  CAS  Google Scholar 

  • Kapoor M, Burgess DJ (2012) Physicochemical characterization of anionic lipid-based ternary siRNA complexes. Biochim Biophys Acta 1818:1603–1612. doi:10.1016/j.bbamem.2012.03.013

    Article  CAS  Google Scholar 

  • Klasse PJ, Bron R, Marsh M (1998) Mechanisms of enveloped virus entry into animal cells. Adv Drug Deliv Rev 34:65–91

    Article  CAS  Google Scholar 

  • Koltover I, Salditt T, Safinya CR (1999) Phase diagram, stability, and overcharging of lamellar cationic lipid–DNA self-assembled complexes. Biophys J 77:915–924. doi:10.1016/S0006-3495(99)76942-0

    Article  CAS  Google Scholar 

  • Lakkaraju A, Dubinsky JM, Low WC, Rahman YE (2001) Neurons are protected from excitotoxic death by p53 antisense oligonucleotides delivered in anionic liposomes. J Biol Chem 276:32000–32007. doi:10.1074/jbc.M100138200

    Article  CAS  Google Scholar 

  • Lasic DD (1997) Liposomes in gene delivery. CRC Press, Cleveland

    Google Scholar 

  • Lazarow A, Cooperstein SJ (1953) Studies on the mechanism of Janus Green B staining of mitochondria. Exp Cell Res 5:56–69. doi:10.1016/0014-4827(53)90094-9

    Article  CAS  Google Scholar 

  • Lengyel A, Uhríková D, Klacsová M, Balgavý P (2011) DNA condensation and its thermal stability influenced by phospholipid bilayer and divalent cations. Colloid Surface B 86:212–217. doi:10.1016/j.colsurfb.2011.04.001

    Article  CAS  Google Scholar 

  • Lewis RN, McElhaney RN (2000) Surface charge markedly attenuates the nonlamellar phase-forming propensities of lipid bilayer membranes: calorimetric and (31)P-nuclear magnetic resonance studies of mixtures of cationic, anionic, and zwitterionic lipids. Biophys J 79:1455–1464. doi:10.1016/S0006-3495(00)76397-1

    Article  CAS  Google Scholar 

  • Lin AJ, Slack NL, Ahmad A, George CX, Samuel CE, Safinya CR (2003) Three-dimensional imaging of lipid gene-carriers: membrane charge density controls universal transfection behavior in lamellar cationic liposome–DNA complexes. Biophys J 84:3307–3316. doi:10.1016/S0006-3495(03)70055-1

    Article  CAS  Google Scholar 

  • Mady MM, Ghannam MM, Khalil WA, Repp R, Markus M, Rascher W, Müller R, Fahr A (2004) Efficient gene delivery with serum into human cancer cells using targeted anionic liposomes. J Drug Target 12:11–18. doi:10.1080/10611860410001683059

    Article  CAS  Google Scholar 

  • Mel’nikova YS, Lindman B (2000) pH-controlled DNA condensation in the presence of dodecyldimethylamine oxide. Langmuir 16:5871–5878. doi:10.1021/la991382t

    Article  Google Scholar 

  • Mochizuki S, Kanegae N, Nishina K, Kamikawa Y, Koiwai K, Masunaga H, Sakurai K (2013) The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochim Biophys Acta 1828:412–418. doi:10.1016/j.bbamem.2012.10.017

    Article  CAS  Google Scholar 

  • Mornet E, Carmoy N, Lainé C, Lemiègre L, Le Gall T, Laurent I, Marianowski R, Férec C, Lehn P, Benvegnu T, Montier T (2013) Folate-equipped nanolipoplexes mediated efficient gene transfer into human epithelial cells. Int J Mol Sci 14:1477–1501. doi:10.3390/ijms14011477

    Article  CAS  Google Scholar 

  • Nguyen LT, Atobe K, Barichello JM, Ishida T, Kiwada H (2007) Complex formation with plasmid DNA increases the cytotoxicity of cationic liposomes. Biol Pharm Bull 30:751–757

    Article  CAS  Google Scholar 

  • Patil SD, Rhodes DG, Burgess DJ (2004) Anionic liposomal delivery system for DNA transfection. AAPS J 6:e29. doi:10.1208/aapsj060429

    Article  Google Scholar 

  • Patil SD, Rhodes DG, Burgess DJ (2005) Biophysical characterization of anionic lipoplexes. Biochim Biophys Acta 1711:1–11. doi:10.1016/j.bbamem.2005.03.004

    Article  CAS  Google Scholar 

  • Pullmannová P, Bastos M, Bai G, Funari SS, Lacko I, Devínsky F, Teixeira J, Uhríková D (2012) The ionic strength effect on the DNA complexation by DOPC—gemini surfactants liposomes. Biophys Chem 160:35–45. doi:10.1016/j.bpc.2011.09.002

    Article  Google Scholar 

  • Rädler JO, Koltover I, Salditt T, Safinya CR (1997) Structure of DNA–cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275:810–814

    Article  Google Scholar 

  • Ramamoorth M, Narvekar A (2015) Non viral vectors in gene therapy—an overview. J Clin Diagn Res 9:GE01–GE06. doi:10.7860/JCDR/2015/10443.5394

    Google Scholar 

  • Romano G, Michell P, Pacilio C, Giordano A (2000) Latest developments in gene transfer technology: achievements, perspectives, and controversies over therapeutic applications. Stem Cells 18:19–39. doi:10.1634/stemcells.18-1-19

    Article  CAS  Google Scholar 

  • Schreier S, Frezzatti WA, Araujo PS, Chaimovich H, Cuccovia IM (1984) Effect of lipid membranes on the apparent pK of the local anesthetic tetracaine. Spin label and titration studies. Biochim Biophys Acta 769:231–237

    Article  CAS  Google Scholar 

  • Šeršen F, Leitmanová A, Devínsky F, Lacko I, Balgavý P (1989) A spin label study of perturbation effects of N-(1-methyldodecyl)-N,N,N-trimethylammonium bromide and N-(1-methyldodecyl)-N,N-dimethylamine oxide on model membranes prepared from Escherichia coli-isolated lipids. Gen Physiol Biophys 8:133–156

    Google Scholar 

  • Šeršeň F, Balgavý P, Devínsky F (1990) Electron spin resonance study of chloroplast photosynthetic activity in the presence of amphiphilic amines. Gen Physiol Biophys 9:625–633

    Google Scholar 

  • Simões S, Filipe A, Faneca H, Mano M, Penacho N, Düzgünes N, de Lima MP (2005) Cationic liposomes for gene delivery. Expert Opin Drug Del 2:237–254. doi:10.1517/17425247.2.2.237

    Article  Google Scholar 

  • Srinivasan C, Burgess DJ (2009) Optimization and characterization of anionic lipoplexes for gene delivery. J Control Release 136:62–70. doi:10.1016/j.jconrel.2009.01.022

    Article  CAS  Google Scholar 

  • Sternberg B (1998) Morphology of cationic liposome/DNA complexes in relation to their chemical composition. J Liposome Res 6:515–533

    Article  Google Scholar 

  • Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358. doi:10.1038/nrg1066

    Article  CAS  Google Scholar 

  • Uchida E, Mizuguchi H, Ishii-Watabe A, Hayakawa T (2002) Comparison of the efficiency and safety of non-viral vector-mediated gene transfer into a wide range of human cells. Biol Pharm Bull 25:891–897

    Article  CAS  Google Scholar 

  • Uhríková D, Kučerka N, Islamov A, Gordeliy V, Balgavý P (2001) Small-angle neutron scattering study of N-dodecyl-N,N-dimethylamine N-oxide induced solubilization of dioleoylphosphatidylcholine bilayers in liposomes. Gen Physiol Biophys 20:183–189

    Google Scholar 

  • Uhríková D, Hanulová M, Funari SS, Lacko I, Devínsky F, Balgavý P (2004) The structure of DNA–DLPC-cationic gemini surfactant aggregates: a small angle synchrotron X-ray diffraction study. Biophys Chem 111:197–204. doi:10.1016/j.bpc.2004.05.012

    Article  Google Scholar 

  • Uhríková D, Hanulová M, Funari SS, Khusainova RS, Šeršeň F, Balgavý P (2005) The structure of DNA–DOPC aggregates formed in presence of calcium and magnesium ions: a small-angle synchrotron X-ray diffraction study. Biochim Biophys Acta 1713:15–28. doi:10.1016/j.bbamem.2005.05.006

    Article  Google Scholar 

  • Uhríková D, Tlčimuka O, Lengyel A, Funari SS, Lacko I, Balgavý I (2007) DNA condensation in presence of N-tetradecyl-N,N-dimethylamine-N-oxide: pH dependence. In: Surfactants and dispersed systems in theory and practice proceedings, Faculty of Chemistry, Wrocław University of Technology, Książ Castle, pp 393–396

  • Wang Y, Dubin PL, Zhang H (2001) Interaction of DNA with cationic micelles: effects of micelle surface charge density, micelle shape, and ionic strength on complexation and DNA collapse. Langmuir 17:1670–1673. doi:10.1021/la0010673

    Article  CAS  Google Scholar 

  • Warisnoicharoen W, Lansley AB, Lawrence MJ (2003) Toxicological evaluation of mixtures of nonionic surfactants, alone and in combination with oil. J Pharm Sci 92:859–868. doi:10.1002/jps.10335

    Article  CAS  Google Scholar 

  • Wasungu L, Hoekstra D (2006) Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release 116:255–264. doi:10.1016/j.jconrel.2006.06.024

    Article  CAS  Google Scholar 

  • Zhou X, Huang L (1994) DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action. Biochim Biophys Acta 1189:195–203

    Article  CAS  Google Scholar 

  • Zuhorn IS, Bakowsky U, Polushkin E, Visser WH, Stuart MCA, Engberts JBFN, Hoekstra D (2005) Nonbilayer phase of lipoplex–membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Mol Therapy J Am Soc Gene Ther 11:801–810. doi:10.1016/j.ymthe.2004.12.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SAXD experiments were performed at BL11-NCD beamline at Alba Synchrotron with the collaboration of ALBA staff. The authors wish to thank Dr. Alexander Bucsi for his help at SAXD measurements. Experiments were supported by Grant VEGA 1/0916/16, grant FaF UK/22/2016, FaF UK/44/2016, HASYLAB project II-20100372 EC, JINR project 04-4-1121-2015/2017, APVV-0516-12 and APVV-0212-10. Part of the results utilizes knowledge gained from the project Center of excellence in security research (CEBV) ITMS 26240120034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilda Liskayová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human or animal studies

No human or animal studies were carried out by the authors for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liskayová, G., Hubčík, L., Šišková, K. et al. pH-sensitive N,N-(dimethyl)-N-alkanamine-N-oxides as gene delivery vectors. Chem. Pap. 71, 1739–1748 (2017). https://doi.org/10.1007/s11696-017-0171-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0171-2

Keywords

Navigation