Skip to main content
Log in

Small camera as a handheld colorimetric tool in the analytical chemistry

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Recently, there is an effort to introduce new types of analytical procedures and handheld assays to provide simple and reliable equipment for the field and household analyses. Development of diagnostic tools for self-diagnosis is another challenge in analytical chemistry. Digital cameras are widely available and cheap, hence they could be the sensor platform for construction of analytical and diagnostic methods. In general, good availability of cameras integrated into smartphones can be easily converted into an analytical tool. This review relates to the use of digital camera in analytical chemistry and there are introduced the facts how digital data can be processed and what the limits of digital photography are. Recent papers in this issue and discussion of development in camera based assays is also provided here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Apilux A, Ukita Y, Chikae M, Chailapakul O, Takamura Y (2013) Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip 13:126–135. doi:10.1039/c2lc40690j

    Article  CAS  Google Scholar 

  • Arakawa T, Iitani K, Wang X, Kajiro T, Toma K, Yano K, Mitsubayashi K (2015) A sniffer-camera for imaging of ethanol vaporization from wine: the effect of wine glass shape. Analyst 140:2881–2886. doi:10.1039/c4an02390k

    Article  CAS  Google Scholar 

  • Arciuli M, Palazzo G, Gallone A, Mallardi A (2013) Bioactive paper platform for colorimetric phenols detection. Sens Actuator B-Chem 186:557–562. doi:10.1016/j.snb.2013.06.042

    Article  CAS  Google Scholar 

  • Awqatty B, Samaddar S, Cash KJ, Clark HA, Dubach JM (2014) Fluorescent sensors for the basic metabolic panel enable measurement with a smart phone device over the physiological range. Analyst 139:5230–5238. doi:10.1039/c4an00999a

    Article  CAS  Google Scholar 

  • Bougot-Robin K, Li SB, Zhang YH, Hsing IM, Benisty H, Wen WJ (2012) “Peak tracking chip” for label-free optical detection of bio-molecular interaction and bulk sensing. Analyst 137:4785–4794. doi:10.1039/c2an35994d

    Article  CAS  Google Scholar 

  • Bueno D, Mishra RK, Hayat A, Catanante G, Sharma V, Munoz R, Marty JL (2016a) Portable and low cost fluorescence set-up for in situ screening of Ochratoxin A. Talanta 159:395–400. doi:10.1016/j.talanta.2016.06.039

    Article  CAS  Google Scholar 

  • Bueno D, Valdez LF, Gutierrez Salgado JM, Marty JL, Munoz R (2016b) Colorimetric analysis of Ochratoxin A in beverage samples. Sensors 16:1888. doi:10.3390/s16111888

    Article  Google Scholar 

  • Cannistraci CV, Alessio M (2016) Image pretreatment tools I: algorithms for map denoising and background subtraction methods. Methods Mol Biol. doi:10.1007/978-1-4939-3255-9_5

    Google Scholar 

  • Cho S, Park TS, Nahapetian TG, Yoon JY (2015) Smartphone-based, sensitive RAD detection of urinary tract infection and gonorrhea. Biosens Bioelectron 74:601–611. doi:10.1016/j.bios.2015.07.014

    Article  CAS  Google Scholar 

  • Coskun AF, Wong J, Khodadadi D, Nagi R, Tey A, Ozcan A (2013) A personalized food allergen testing platform on a cellphone. Lab Chip 13:636–640. doi:10.1039/c2lc41152k

    Article  CAS  Google Scholar 

  • de Souza FR, Duarte GF, Garcia PD, Coltro WKT (2014) Evaluation of digital image capture devices for colorimetric detection on printed microzones. Quim Nova 37:1171-U287. doi:10.5935/0100-4042.20140189

    Article  Google Scholar 

  • Debus B, Kirsanov D, Yaroshenko I, Sidorova A, Piven A, Legin A (2015) Two low-cost digital camera-based platforms for quantitative creatinine analysis in urine. Anal Chim Acta 895:71–79. doi:10.1016/j.aca.2015.09.007

    Article  CAS  Google Scholar 

  • Denissen H, Dozic A (2010) Photometric assessment of tooth color using commonly available software. Eur J Esthet Dent 5:204–215

    Google Scholar 

  • Domeika M, Zhurauskaya L, Savicheva A, Frigo N, Sokolovskiy E, Hallen A, Unemo M, Ballard RC, Network ES (2010) Guidelines for the laboratory diagnosis of trichomoniasis in East European countries. J Eur Acad Dermatol Venereol 24:1125–1134. doi:10.1111/j.1468-3083.2010.03601.x

    Article  CAS  Google Scholar 

  • Ducrotoy MJ, Conde-Alvarez R, Blasco JM, Moriyon I (2016) A review of the basis of the immunological diagnosis of ruminant brucellosis. Vet Immunol Immunopathol 171:81–102. doi:10.1016/j.vetimm.2016.02.002

    Article  CAS  Google Scholar 

  • Feng S, Caire R, Cortazar B, Turan M, Wong A, Ozcan A (2014) Immunochromatographic diagnostic test analysis using Google glass. ACS Nano 8:3069–3079. doi:10.1021/nn500614k

    Article  CAS  Google Scholar 

  • Galinska EM, Zagorski J (2013) Brucellosis in humans—etiology, diagnostics, clinical forms. Ann Agric Environ Med 20:233–238

    Google Scholar 

  • Gao YK, Xin ZM, Gan QQ, Cheng XH, Bartoli FJ (2013) Plasmonic interferometers for label-free multiplexed sensing. Opt Express 21:5859–5871. doi:10.1364/oe.21.005859

    Article  CAS  Google Scholar 

  • Gas F, Baus B, Quere J, Chapelle A, Dreanno C (2016) Rapid detection and quantification of the marine toxic algae, Alexandrium minutum, using a super-paramagnetic immunochromatographic strip test. Talanta 147:581–589. doi:10.1016/j.talanta.2015.10.036

    Article  CAS  Google Scholar 

  • Grepstad JO, Kaspar P, Solgaard O, Johansen IR, Sudbo AS (2012) Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application. Opt Express 20:7954–7965. doi:10.1364/oe.20.007954

    Article  CAS  Google Scholar 

  • Guo S, Zhang W, He L, Tan G, Min M, Kyaw MP, Wang B, Cui L (2016) Rapid evaluation of artesunate quality with a specific monoclonal antibody-based lateral flow dipstick. Anal Bioanal Chem 408:6003–6008. doi:10.1007/s00216-016-9363-9

    Article  CAS  Google Scholar 

  • Ismail A, Araujo MO, Chagas CLS, Griveau S, D’Orlye F, Varenne A, Bedioui F, Coltro WKT (2016) Colorimetric analysis of the decomposition of S-nitrosothiols on paper-based microfluidic devices. Analyst 141:6314–6320. doi:10.1039/c6an01439a

    Article  CAS  Google Scholar 

  • Jahns S, Brau M, Meyer BO, Karrock T, Gutekunst SB, Blohm L, Selhuber-Unkel C, Buhmann R, Nazirizadeh Y, Gerken M (2015) Handheld imaging photonic crystal biosensor for multiplexed, label-free protein detection. Biomed Opt Express 6:3724–3736. doi:10.1364/boe.6.003724

    Article  CAS  Google Scholar 

  • Jung Y, Kim J, Awofeso O, Kim H, Regnier F, Bae E (2015) Smartphone-based colorimetric analysis for detection of saliva alcohol concentration. Appl Optics 54:9183–9189. doi:10.1364/ao.54.009183

    Article  CAS  Google Scholar 

  • Khan SA, Smith GT, Seo F, Ellerbee AK (2015) Label-free and non-contact optical biosensing of glucose with quantum dots. Biosens Bioelectron 64:30–35. doi:10.1016/j.bios.2014.08.035

    Article  CAS  Google Scholar 

  • Kostelnik A, Cegan A, Pohanka M (2016) Color change of phenol red by integrated smart phone camera as a tool for the determination of neurotoxic compounds. Sensors 16:1212. doi:10.3390/s16091212

    Article  Google Scholar 

  • Lee PY, Costumbrado J, Hsu CY, Kim YH (2012) Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp 62:e3923. doi:10.3791/3923

    Google Scholar 

  • Ludwig SKJ, Tokarski C, Lang SN, van Ginkel LA, Zhu HY, Ozcan A, Nielen MWF (2015) Calling biomarkers in milk using a protein microarray on your smartphone. PloS One 10:e0134360. doi:10.1371/journal.pone.0134360

    Article  Google Scholar 

  • Martinkova P, Pohanka M (2016) Colorimetric sensor based on bubble wrap and camera phone for glucose determination. J Appl Biomed 14:315–319. doi:10.1016/j.jab.2016.05.003

    Article  Google Scholar 

  • McLaren EA, Figueira J, Goldstein RE (2017) A technique using calibrated photography and photoshop for accurate shade analysis and communication. Compend Contin Educ Dent 38:106–113

    Google Scholar 

  • Mirasoli M, Buragina A, Dolci LS, Simoni P, Anfossi L, Giraudi G, Roda A (2012) Chemiluminescence-based biosensor for fumonisins quantitative detection in maize samples. Biosens Bioelectron 32:283–287. doi:10.1016/j.bios.2011.11.039

    Article  CAS  Google Scholar 

  • Mirasoli M, Bonvicini F, Dolci LS, Zangheri M, Gallinella G, Roda A (2013) Portable chemiluminescence multiplex biosensor for quantitative detection of three B19 DNA genotypes. Anal Bioanal Chem 405:1139–1143. doi:10.1007/s00216-012-6573-7

    Article  CAS  Google Scholar 

  • Nurul Najian AB, Engku Nur Syafirah EA, Ismail N, Mohamed M, Yean CY (2016) Development of multiplex loop mediated isothermal amplification (m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira. Anal Chim Acta 903:142–148. doi:10.1016/j.aca.2015.11.015

    Article  CAS  Google Scholar 

  • Ou L, Lv Q, Wu C, Hao H, Zheng Y, Jiang Y (2016) Development of a lateral flow immunochromatographic assay for rapid detection of Mycoplasma pneumoniae-specific IgM in human serum specimens. J Microbiol Methods 124:35–40

    Article  CAS  Google Scholar 

  • Ozkan H, Kayhan OS (2016) A novel automatic rapid diagnostic test reader platform. Comput Math Methods Med 7498217:14

    Google Scholar 

  • Paillat L, Perichet C, Lavoine S, Meierhenrich U, Fernandez X (2012) Validated high-performance thin-layer chromatography method for the determination of nicotine in tobacco (Nicotiana tabacum L.) extracts. JPC-J Planar Chromatogr-Mod TLC 25:23–29. doi:10.1556/jpc.25.2012.1.4

    Article  CAS  Google Scholar 

  • Parviz BA (2014) Of molecules, medicine, and Google glass. ACS Nano 8:1956–1957. doi:10.1021/nn501242u

    Article  CAS  Google Scholar 

  • Petryayeva E, Algar WR (2014) Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots. Anal Chem 86:3195–3202. doi:10.1021/ac500131r

    Article  CAS  Google Scholar 

  • Pillai D, Pandita N (2016) Validated high performance thin layer chromatography method for the quantification of bioactive marker compounds in Draksharishta, an ayurvedic polyherbal formulation. Rev Bras Farmacogn-Braz J Pharmacogn 26:558–563. doi:10.1016/j.bjp.2016.03.015

    Article  CAS  Google Scholar 

  • Pohanka M (2009) Monoclonal and polyclonal antibodies production—preparation of potent biorecognition element. J Appl Biomed 7:115–121

    CAS  Google Scholar 

  • Pohanka M (2012) Acetylcholinesterase based dipsticks with indoxylacetate as a substrate for assay of organophosphates and carbamates. Anal Lett 45:367–374. doi:10.1080/00032719.2011.644743

    Article  CAS  Google Scholar 

  • Pohanka M (2015) Photography by cameras integrated in smartphones as a tool for analytical chemistry represented by an butyrylcholinesterase activity assay. Sensors 15:13752–13762. doi:10.3390/s150613752

    Article  CAS  Google Scholar 

  • Pohanka M (2017) Quantum dots in the therapy: current trends and perspectives. Mini Rev Med Chem 20:20

    Google Scholar 

  • Pulleyblank DE, Shure M, Vinograd J (1977) The quantitation of fluorescence by photography. Nucl Acids Res 4:1409–1418. doi:10.1093/nar/4.5.1409

    Article  CAS  Google Scholar 

  • Rajendran VK, Bakthavathsalam P, Ali BMJ (2014) Smartphone based bacterial detection using biofunctionalized fluorescent nanoparticles. Microchim Acta 181:1815–1821. doi:10.1007/s00604-014-1242-5

    Article  CAS  Google Scholar 

  • Richards SJ, Otten L, Gibson MI (2016) Glycosylated gold nanoparticle libraries for label-free multiplexed lectin biosensing. J Mat Chem B 4:3046–3053. doi:10.1039/c5tb01994j

    Article  CAS  Google Scholar 

  • Saldarriaga OA, Castellanos-Gonzalez A, Porrozzi R, Baldeviano GC, Lescano AG, de Los Santos MB, Fernandez OL, Saravia NG, Costa E, Melby PC, Travi BL (2016) An innovative field-applicable molecular test to diagnose cutaneous Leishmania Viannia spp. infections. PloS Negl Trop Dis 10:e0004638. doi:10.1371/journal.pntd.0004638

    Article  Google Scholar 

  • Sener G, Uzun L, Denizli A (2014) Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water. ACS Appl Mater Interfaces 6:18395–18400. doi:10.1021/am5071283

    Article  CAS  Google Scholar 

  • Shen L, Hagen JA, Papautsky I (2012) Point-of-care colorimetric detection with a smartphone. Lab Chip 12:4240–4243. doi:10.1039/c2lc40741h

    Article  CAS  Google Scholar 

  • Sheppard K, Cassella JP, Fieldhouse S (2017) A comparative study of photogrammetric methods using panoramic photography in a forensic context. Forensic Sci Int 273:29–38

    Article  Google Scholar 

  • Skowron M, Zakrzewski R, Ciesielski W (2016) Application of thin-layer chromatography image analysis technique in quantitative determination of sphingomyelin. J Anal Chem 71:808–813. doi:10.1134/s1061934816080116

    Article  CAS  Google Scholar 

  • Sola A, Espinosa A, Tarraga A, Molina P (2014) Nitrogen-rich multinuclear ferrocenophanes as multichannel chemosensor molecules for transition and heavy-metal cations. Sensors 14:14339–14355. doi:10.3390/s140814339

    Article  CAS  Google Scholar 

  • Su KQ, Zou QC, Zhou J, Zou L, Li HB, Wang TX, Hu N, Wang P (2015) High-sensitive and high-efficient biochemical analysis method using a bionic electronic eye in combination with a smartphone-based colorimetric reader system. Sens Actuator B-Chem 216:134–140. doi:10.1016/j.snb.2015.04.052

    Article  CAS  Google Scholar 

  • Wu YY, Boonloed A, Sleszynsld N, Koesdjojo M, Armstrong C, Bracha S, Remcho VT (2015) Clinical chemistry measurements with commercially available test slides on a smartphone platform: colorimetric determination of glucose and urea. Clin Chim Acta 448:133–138. doi:10.1016/j.cca.2015.05.020

    Article  CAS  Google Scholar 

  • Wu TH, Chang CC, Vaillant J, Bruyant A, Lin CW (2016) DNA biosensor combining single-wavelength colorimetry and a digital lock-in amplifier within a smartphone. Lab Chip 16:4527–4533. doi:10.1039/c6lc01170e

    Article  CAS  Google Scholar 

  • Yetisen AK, Martinez-Hurtado JL, Garcia-Melendrez A, da Cruz Vasconcellos F, Lowe CR (2014) A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sens Actuator B Chem 196:156–160. doi:10.1016/j.snb.2014.01.077

    Article  CAS  Google Scholar 

  • Yu L, Shi ZZ, Fang C, Zhang YY, Liu YS, Li CM (2015) Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk. Biosens Bioelectron 69:307–315. doi:10.1016/j.bios.2015.02.035

    Article  CAS  Google Scholar 

  • Zangheri M, Cevenini L, Anfossi L, Baggiani C, Simoni P, Di Nardo F, Roda A (2015a) A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens Bioelectron 64:63–68. doi:10.1016/j.bios.2014.08.048

    Article  CAS  Google Scholar 

  • Zangheri M, Di Nardo F, Anfossi L, Giovannoli C, Baggiani C, Roda A, Mirasoli M (2015b) A multiplex chemiluminescent biosensor for type B-fumonisins and aflatoxin B1 quantitative detection in maize flour. Analyst 140:358–365. doi:10.1039/c4an01613k

    Article  CAS  Google Scholar 

  • Zhang X, Wu C, Wen K, Jiang H, Shen J, Zhang S, Wang Z (2015) Comparison of fluorescent microspheres and colloidal gold as labels in lateral flow immunochromatographic assays for the detection of T-2 toxin. Molecules 21:27. doi:10.3390/molecules21010027

    Article  Google Scholar 

  • Zheng W, Caroll SS, Inglese J, Graves R, Howells L, Strulovici B (2001) Miniaturization of a hepatitis C virus rna polymerase assay using a −102 °C cooled CCD camera-based imaging system. Anal Biochem 290:214–220. doi:10.1006/abio.2001.4991

    Article  CAS  Google Scholar 

  • Zhou ZY, Xu LR, Wu SZ, Su B (2014) A novel biosensor array with a wheel-like pattern for glucose, lactate and choline based on electrochemiluminescence imaging. Analyst 139:4934–4939. doi:10.1039/c4an00687a

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Svarog, and a long-term organization development plan and specific research funds (Faculty of Military Health Sciences, University of Defense, Czech Republic) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Pohanka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pohanka, M. Small camera as a handheld colorimetric tool in the analytical chemistry. Chem. Pap. 71, 1553–1561 (2017). https://doi.org/10.1007/s11696-017-0166-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0166-z

Keywords

Navigation