Skip to main content
Log in

Waste-free synthesis of silica nanospheres and silica nanocoatings from recycled ethanol–ammonium solution

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this study, ethanol–ammonium recovery using a distillation system was evaluated. The experimental design was used to evaluate the possibility of solvent re-use and the influence of distillation on the recovery yield, ethanol–ammonium ratio (catalyst concentration) and size of the obtained nanostructures. The synthesised silica nanospheres from distilled ethanol–ammonium were compared in terms of size and shape (ammonium concentration) to the nanostructures obtained from filtrated and centrifuged solvents. The results showed that the process for ethanol–ammonium recovery proposed in this work, provides a large potential for reducing the amount of waste from the synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alwi R, Telenkov S, Mandelis A, Leshuk T, Gu F, Oladepo S, Michaelian K (2012) Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics. Biomed Opt Express 3(10):2500–2509

    Article  CAS  Google Scholar 

  • Bohmer N, Jordan A (2015) Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells. Beilstein J Nanotechnol 6:167–176

    Article  Google Scholar 

  • Briesen H, Fuhrmann A, Pratsinis SE (1998) The effect of precursor in flame synthesis of SiO2. Chem Eng Sci 53(24):4105–4112

    Article  CAS  Google Scholar 

  • Esquena J, Pons R, Azemar N, Caelles J, Solans C (1997) Preparation of monodisperse silica particles in emulsion media. Colloids Surf A 123–124:575–586

    Article  Google Scholar 

  • Giesche H (1994) Synthesis of monodispersed silica powders. II. Controlled growth reaction and continuous production process. J Eur Ceram Soc 14(3):205–214

    Article  CAS  Google Scholar 

  • Hanprasopwattana A, Srinivasan S, Sault AG, Datye AK (1996) Titania coatings on monodisperse silica spheres (characterization using 2-propanol dehydration and TEM). Langmuir 12:3173–3179

    Article  CAS  Google Scholar 

  • He D, Wang S, Lei L, Nie H (2015) Core–shell particles for controllable release of drug. Chem Eng Sci 125:108–120

    Article  CAS  Google Scholar 

  • Horszczaruk E, Mijowska E, Cendrowski K, Mijowska S, Sikora P (2013) The influence of nanosilica with different morphology on the mechanical properties of cement mortars. Cem Lime Concr 1:24–32

    Google Scholar 

  • Kamaruddin S, Stephan D (2011) The preparation of silica–titania core–shell particles and their impact as an alternative material to pure nano-titania photocatalysts. Catal Today 161:53–58

    Article  CAS  Google Scholar 

  • Kamaruddin S, Stephan D (2013) Quartz–titania composites for the photocatalytical modification of construction materials. Cem Conc Compos 36:109–115

    Article  CAS  Google Scholar 

  • Kojima T, Elliott JA (2013) Effect of silica nanoparticles on the bulk flow properties of fine cohesive powders. Chem Eng Sci 101:315–328

    Article  CAS  Google Scholar 

  • Land G, Stephan D (2015) Controlling cement hydration with nanoparticles. Cem Concr Compos 57:64–67

    Article  CAS  Google Scholar 

  • Lee DH, Cho GS, Lim HM, Kim DS, Kim C, Lee SH (2013) Comparisons of particle size measurement method for colloidal silica. J Ceram Process Res 14(2):274–278

    Google Scholar 

  • Mueller R, Mädler L Sotiris, Pratsinis E (2003) Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chem Eng Sci 58:1969–1976

    Article  CAS  Google Scholar 

  • Nikolić M, Giannakopoulos KP, Srdić VV (2010) Synthesis and characterization of mesoporous silica core-shell particles. Process Appl Ceram 4(2):81–85

    Article  Google Scholar 

  • Nozawa K, Gailhanou H, Raison L, Panizza P, Ushiki H, Sellier E, Delville JP, Delville MH (2005) Smart control of monodisperse stöber silica particles: effect of reactant addition rate on growth process. Langmuir 21:1516–1523

    Article  CAS  Google Scholar 

  • Oertel T, Hutter F, Helbig U, Sextl G (2014a) Amorphous silica in ultra-high performance concrete: first hour of hydration. Cem Concr Res 58:131–142

    Article  CAS  Google Scholar 

  • Oertel T, Helbig U, Hutter F, Kletti H, Sextl G (2014b) Influence of amorphous silica on the hydration in ultra-high performance concrete. Cem Concr Res 58:121–130

    Article  CAS  Google Scholar 

  • Quercia G, Lazaro A, Geus JW, Brouwers HJH (2013) Characterization of morphology and texture of several amorphous nano-silica particles used in concrete. Cement Concr Compos 44:77–92

    Article  CAS  Google Scholar 

  • Rahman IA, Vejayakumarana P, Sipauta CS, Ismaila J, Bakara MA, Adnana R, Chee CK (2007) An optimized sol–gel synthesis of stable primary equivalent silica particles. Colloids Surf A 294:102–110

    Article  CAS  Google Scholar 

  • Said AM, Zeidan MS, Bassuoni MT, Tiana Y (2012) Properties of concrete incorporating nano-silica. Constr Build Mater 36:838–844

    Article  Google Scholar 

  • Shakhmenko G, Juhnevica I, Korjakins A (2013) Influence of sol–gel nanosilica on hardening processes and physically-mechanical properties of cement paste. Proced Eng 57:1013–1021

    Article  CAS  Google Scholar 

  • Singh LP, Agarwal SK, Bhattacharyya SK, Sharma U, Ahalawat S (2001) Preparation of silica nanoparticles and its beneficial role in cementitious materials. Nanomater Nanotechnol 1(1):44–51

    Google Scholar 

  • Singh L, Bhattacharyya S, Sharma U, Mishra G, Ahalawat S (2013) Microstructure improvement of cementitious systems using nanomaterials: a key for enhancing the durability of concrete. In: Franz Josef U, Hamlin JM, Pellenq RJM (eds) Mechanics and physics of creep, shrinkage, and durability of concrete. American Society of Civil Engineers, Cambridge, pp 293–300

    Chapter  Google Scholar 

  • Singh LP, Goel A, Bhattachharyya SK, Ahalawat S, Sharma U, Mishra G (2015) Effect of morphology and dispersibility of silica nanoparticles on the mechanical behaviour of cement mortar. Int J Concr Struct Mater 9(2):207–217

    Article  Google Scholar 

  • Srinivansan S, Datye AK, Hampden-Smith M, Wachs IE, Deo G, Jehng JM, Turek AM, Peden CHF (1991) The formation of titanium oxide monolayer coatings on silica surfaces. J Catal 131:260–275

    Article  Google Scholar 

  • Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  • Tachibana M, Engl W, Panizza P, Deleuze H, Lecommandoux S, Ushiki H, Backov R (2008) Combining sol–gel chemistry and millifluidic toward engineering microporous silica ceramic final sizes and shapes: an integrative chemistry approach. Chem Eng Process 47(8):1317–1322

    Article  Google Scholar 

  • Tang L, Cheng J (2013) Nonporous silica nanoparticles for nanomedicine application. Nano Today 8(3):290–312

    Article  CAS  Google Scholar 

  • Van Helden AK, Jansen JW, Vrij A (1981) Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents. J Colloid Interface Sci 81:354–368

    Article  Google Scholar 

  • Van Blaaderen A, Geest J, Vrij A (1992) Monodisperse colloidal silica spheres from tetraalkoxysilanes: particle formation and growth mechanism. J Colloid Interface Sci 154:481–501

    Article  Google Scholar 

  • Wang L, Wang K, Santra S, Zhao X, Hilliard LR, Smith JE, Wu J, Tan W (2006) Watching silica nanoparticles glow in the biological world. Anal Chem 78:646–654

    Article  Google Scholar 

  • Wang J, Sugawara Narutaki A, Fukao M, Yokoi T, Shimojima A, Okubo T (2011) Two-phase synthesis of monodisperse silica nanospheres with amines or ammonia catalyst and their controlled self-assembly. ACS Appl Mater Interfaces 3(5):1538–1544

    Article  CAS  Google Scholar 

  • Wegner K, Pratsinis SE (2003) Scale-up of nanoparticle synthesis in diffusion flame reactors. Chem Eng Sci 58:4581–4589

    Article  CAS  Google Scholar 

  • Yao G, Wang L, Wu Y, Smith J, Xu J, Zhao W, Lee E, Tan W (2006) FloDots: luminescent nanoparticles. Anal Bioanal Chem 385:518–524

    Article  CAS  Google Scholar 

  • Yu T, Malugin A, Ghandehari H (2011) Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 5(7):5717–5728

    Article  CAS  Google Scholar 

  • Zainal NA, Abdul Shukor SR, Wab HAA, Abdul Razak K (2013) Study on the effect of synthesis parameters of silica nanoparticles entrapped with rifampicin. AIDIC Conf Ser 11:431–440

    Google Scholar 

  • Zhuravlev LT (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf A 173:1–38

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was funded by National Science Centre within 2014/13/B/ST8/03875 (OPUS 7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Cendrowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cendrowski, K., Sikora, P., Horszczaruk, E. et al. Waste-free synthesis of silica nanospheres and silica nanocoatings from recycled ethanol–ammonium solution. Chem. Pap. 71, 841–848 (2017). https://doi.org/10.1007/s11696-016-0099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0099-y

Keywords

Navigation