Chemical Papers

, Volume 71, Issue 4, pp 841–848 | Cite as

Waste-free synthesis of silica nanospheres and silica nanocoatings from recycled ethanol–ammonium solution

  • Krzysztof Cendrowski
  • Pawel Sikora
  • Elzbieta Horszczaruk
  • Ewa Mijowska
Original Paper


In this study, ethanol–ammonium recovery using a distillation system was evaluated. The experimental design was used to evaluate the possibility of solvent re-use and the influence of distillation on the recovery yield, ethanol–ammonium ratio (catalyst concentration) and size of the obtained nanostructures. The synthesised silica nanospheres from distilled ethanol–ammonium were compared in terms of size and shape (ammonium concentration) to the nanostructures obtained from filtrated and centrifuged solvents. The results showed that the process for ethanol–ammonium recovery proposed in this work, provides a large potential for reducing the amount of waste from the synthesis.


Sol–gel Stöber method Nanosilica Recycling Waste-free synthesis 



The research was funded by National Science Centre within 2014/13/B/ST8/03875 (OPUS 7).


  1. Alwi R, Telenkov S, Mandelis A, Leshuk T, Gu F, Oladepo S, Michaelian K (2012) Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics. Biomed Opt Express 3(10):2500–2509CrossRefGoogle Scholar
  2. Bohmer N, Jordan A (2015) Caveolin-1 and CDC42 mediated endocytosis of silica-coated iron oxide nanoparticles in HeLa cells. Beilstein J Nanotechnol 6:167–176CrossRefGoogle Scholar
  3. Briesen H, Fuhrmann A, Pratsinis SE (1998) The effect of precursor in flame synthesis of SiO2. Chem Eng Sci 53(24):4105–4112CrossRefGoogle Scholar
  4. Esquena J, Pons R, Azemar N, Caelles J, Solans C (1997) Preparation of monodisperse silica particles in emulsion media. Colloids Surf A 123–124:575–586CrossRefGoogle Scholar
  5. Giesche H (1994) Synthesis of monodispersed silica powders. II. Controlled growth reaction and continuous production process. J Eur Ceram Soc 14(3):205–214CrossRefGoogle Scholar
  6. Hanprasopwattana A, Srinivasan S, Sault AG, Datye AK (1996) Titania coatings on monodisperse silica spheres (characterization using 2-propanol dehydration and TEM). Langmuir 12:3173–3179CrossRefGoogle Scholar
  7. He D, Wang S, Lei L, Nie H (2015) Core–shell particles for controllable release of drug. Chem Eng Sci 125:108–120CrossRefGoogle Scholar
  8. Horszczaruk E, Mijowska E, Cendrowski K, Mijowska S, Sikora P (2013) The influence of nanosilica with different morphology on the mechanical properties of cement mortars. Cem Lime Concr 1:24–32Google Scholar
  9. Kamaruddin S, Stephan D (2011) The preparation of silica–titania core–shell particles and their impact as an alternative material to pure nano-titania photocatalysts. Catal Today 161:53–58CrossRefGoogle Scholar
  10. Kamaruddin S, Stephan D (2013) Quartz–titania composites for the photocatalytical modification of construction materials. Cem Conc Compos 36:109–115CrossRefGoogle Scholar
  11. Kojima T, Elliott JA (2013) Effect of silica nanoparticles on the bulk flow properties of fine cohesive powders. Chem Eng Sci 101:315–328CrossRefGoogle Scholar
  12. Land G, Stephan D (2015) Controlling cement hydration with nanoparticles. Cem Concr Compos 57:64–67CrossRefGoogle Scholar
  13. Lee DH, Cho GS, Lim HM, Kim DS, Kim C, Lee SH (2013) Comparisons of particle size measurement method for colloidal silica. J Ceram Process Res 14(2):274–278Google Scholar
  14. Mueller R, Mädler L Sotiris, Pratsinis E (2003) Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chem Eng Sci 58:1969–1976CrossRefGoogle Scholar
  15. Nikolić M, Giannakopoulos KP, Srdić VV (2010) Synthesis and characterization of mesoporous silica core-shell particles. Process Appl Ceram 4(2):81–85CrossRefGoogle Scholar
  16. Nozawa K, Gailhanou H, Raison L, Panizza P, Ushiki H, Sellier E, Delville JP, Delville MH (2005) Smart control of monodisperse stöber silica particles: effect of reactant addition rate on growth process. Langmuir 21:1516–1523CrossRefGoogle Scholar
  17. Oertel T, Hutter F, Helbig U, Sextl G (2014a) Amorphous silica in ultra-high performance concrete: first hour of hydration. Cem Concr Res 58:131–142CrossRefGoogle Scholar
  18. Oertel T, Helbig U, Hutter F, Kletti H, Sextl G (2014b) Influence of amorphous silica on the hydration in ultra-high performance concrete. Cem Concr Res 58:121–130CrossRefGoogle Scholar
  19. Quercia G, Lazaro A, Geus JW, Brouwers HJH (2013) Characterization of morphology and texture of several amorphous nano-silica particles used in concrete. Cement Concr Compos 44:77–92CrossRefGoogle Scholar
  20. Rahman IA, Vejayakumarana P, Sipauta CS, Ismaila J, Bakara MA, Adnana R, Chee CK (2007) An optimized sol–gel synthesis of stable primary equivalent silica particles. Colloids Surf A 294:102–110CrossRefGoogle Scholar
  21. Said AM, Zeidan MS, Bassuoni MT, Tiana Y (2012) Properties of concrete incorporating nano-silica. Constr Build Mater 36:838–844CrossRefGoogle Scholar
  22. Shakhmenko G, Juhnevica I, Korjakins A (2013) Influence of sol–gel nanosilica on hardening processes and physically-mechanical properties of cement paste. Proced Eng 57:1013–1021CrossRefGoogle Scholar
  23. Singh LP, Agarwal SK, Bhattacharyya SK, Sharma U, Ahalawat S (2001) Preparation of silica nanoparticles and its beneficial role in cementitious materials. Nanomater Nanotechnol 1(1):44–51Google Scholar
  24. Singh L, Bhattacharyya S, Sharma U, Mishra G, Ahalawat S (2013) Microstructure improvement of cementitious systems using nanomaterials: a key for enhancing the durability of concrete. In: Franz Josef U, Hamlin JM, Pellenq RJM (eds) Mechanics and physics of creep, shrinkage, and durability of concrete. American Society of Civil Engineers, Cambridge, pp 293–300CrossRefGoogle Scholar
  25. Singh LP, Goel A, Bhattachharyya SK, Ahalawat S, Sharma U, Mishra G (2015) Effect of morphology and dispersibility of silica nanoparticles on the mechanical behaviour of cement mortar. Int J Concr Struct Mater 9(2):207–217CrossRefGoogle Scholar
  26. Srinivansan S, Datye AK, Hampden-Smith M, Wachs IE, Deo G, Jehng JM, Turek AM, Peden CHF (1991) The formation of titanium oxide monolayer coatings on silica surfaces. J Catal 131:260–275CrossRefGoogle Scholar
  27. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  28. Tachibana M, Engl W, Panizza P, Deleuze H, Lecommandoux S, Ushiki H, Backov R (2008) Combining sol–gel chemistry and millifluidic toward engineering microporous silica ceramic final sizes and shapes: an integrative chemistry approach. Chem Eng Process 47(8):1317–1322CrossRefGoogle Scholar
  29. Tang L, Cheng J (2013) Nonporous silica nanoparticles for nanomedicine application. Nano Today 8(3):290–312CrossRefGoogle Scholar
  30. Van Helden AK, Jansen JW, Vrij A (1981) Preparation and characterization of spherical monodisperse silica dispersions in nonaqueous solvents. J Colloid Interface Sci 81:354–368CrossRefGoogle Scholar
  31. Van Blaaderen A, Geest J, Vrij A (1992) Monodisperse colloidal silica spheres from tetraalkoxysilanes: particle formation and growth mechanism. J Colloid Interface Sci 154:481–501CrossRefGoogle Scholar
  32. Wang L, Wang K, Santra S, Zhao X, Hilliard LR, Smith JE, Wu J, Tan W (2006) Watching silica nanoparticles glow in the biological world. Anal Chem 78:646–654CrossRefGoogle Scholar
  33. Wang J, Sugawara Narutaki A, Fukao M, Yokoi T, Shimojima A, Okubo T (2011) Two-phase synthesis of monodisperse silica nanospheres with amines or ammonia catalyst and their controlled self-assembly. ACS Appl Mater Interfaces 3(5):1538–1544CrossRefGoogle Scholar
  34. Wegner K, Pratsinis SE (2003) Scale-up of nanoparticle synthesis in diffusion flame reactors. Chem Eng Sci 58:4581–4589CrossRefGoogle Scholar
  35. Yao G, Wang L, Wu Y, Smith J, Xu J, Zhao W, Lee E, Tan W (2006) FloDots: luminescent nanoparticles. Anal Bioanal Chem 385:518–524CrossRefGoogle Scholar
  36. Yu T, Malugin A, Ghandehari H (2011) Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 5(7):5717–5728CrossRefGoogle Scholar
  37. Zainal NA, Abdul Shukor SR, Wab HAA, Abdul Razak K (2013) Study on the effect of synthesis parameters of silica nanoparticles entrapped with rifampicin. AIDIC Conf Ser 11:431–440Google Scholar
  38. Zhuravlev LT (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf A 173:1–38CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Krzysztof Cendrowski
    • 1
  • Pawel Sikora
    • 2
    • 3
  • Elzbieta Horszczaruk
    • 2
  • Ewa Mijowska
    • 1
  1. 1.Faculty of Chemical Engineering, Institute of Chemical and Environment EngineeringWest Pomeranian University of Technology in SzczecinSzczecinPoland
  2. 2.Faculty of Civil Engineering and ArchitectureWest Pomeranian University of Technology in SzczecinSzczecinPoland
  3. 3.Department of Building Materials Engineering, Faculty of Building EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations