Skip to main content

Advertisement

Log in

Chitosan-modified TiO2 as photocatalyst for ethanol reforming under visible light

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This work reports the reforming of bio-ethanol on chitosan–TiO2 hybrid photocatalysts at ambient temperature. The influence of chitosan composition on the photocatalytic performance of chitosan–TiO2 hybrid was studied. The hybrids were characterized by CHN elemental analysis, nitrogen adsorption–desorption isotherms, thermogravimetric analysis, diffuse reflectance spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results showed that the preparation variables used for the incorporation of chitosan on TiO2 promoted changes in the morphology, superficial area, crystal size and porosity of the photocatalyst, affecting the band gap of this semiconductor and consequently the reactivity of the chitosan–TiO2 hybrids. The catalysts were evaluated for hydrogen production from ethanol under visible light. It was demonstrated that the calcination temperature of 623 K and a chitosan content of 20% were the most appropriate preparation conditions and the resulting product displays a pore size of 1.9 nm, crystal size of 11.3 nm, BET area of 178 m2 g−1 and band gap of 2.92 eV. The calcination temperature of 623 K and incorporation of 20% of chitosan obtained the same results in the conversion rate of hydrogen in comparison to the pure TiO2 P25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adán C, Martínez-Arias A, Fernández-García M, Bahamonde A (2007) Photocatalytic degradation of ethidium bromide over Titania in aqueous solutions. Appl Catal B 76:395–402. doi:10.1016/j.apcatb.2007.06.013

    Article  Google Scholar 

  • Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271. doi:10.1126/science.1061051

    Article  CAS  Google Scholar 

  • Asiltürk M, Şener Ş (2012) TiO2-activated carbon photocatalysts: preparation, characterization and photocatalytic activities. Chem Eng J 180:354–363. doi:10.1016/j.cej.2011.11.045

    Article  Google Scholar 

  • Bagwasi S, Tian B, Zhang J, Nasir M (2013) Synthesis, characterization and application of bismuth and boron co-doped TiO2: a visible light active photocatalyst. Chem Eng J 217:108–118. doi:10.1016/j.cej.2012.11.080

    Article  CAS  Google Scholar 

  • Bilal M, Jackson SD (2012) Steam reforming of ethanol at medium pressure over Ru/Al2O3: effect of temperature and catalyst deactivation. Catal Sci Technol 2:2043–2051. doi:10.1039/C2CY20267K

    Article  CAS  Google Scholar 

  • Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732. doi:10.1021/ja01864a025

    Article  CAS  Google Scholar 

  • Chen YF, Lee CY, Yeng MY, Chiu HT (2003) The effect of calcination temperature on the crystallinity of TiO2 nanopowders. J Cryst Growth 247:363–370. doi:10.1016/S0022-0248(02)01938-3

    Article  CAS  Google Scholar 

  • Chen Y, Yang H, Liu X, Guo L (2010) Effects of cocatalysts on photocatalytic properties of La doped Cd2TaGaO6 photocatalysts for hydrogen evolution from ethanol aqueous solution. Int J Hydrog Energy 35:7029–7035. doi:10.1016/j.ijhydene.2009.12.059

    Article  CAS  Google Scholar 

  • Chowdhury A, Kudo A, Fujita T, Chen M-W, Adschiri T (2011) Nano-twinned structure and photocatalytic properties under visible light for undoped nano-titania synthesized by hydrothermal reaction in water-ethanol mixture. J Supercrit Fluids 58:136–141. doi:10.1016/j.supflu.2011.04.007

    Article  CAS  Google Scholar 

  • Collazzo GC, Foletto EL, Jahn SL, Villetti MA (2012) Degradation of Direct Black 38 dye under visible light and sunlight irradiation by N-doped anatase TiO2 as photocatalyst. J Environ Manag 98:107–111. doi:10.1016/j.jenvman.2011.12.029

    Article  CAS  Google Scholar 

  • Cruz-Romero MC, Murphy T, Morris M, Cummins E, Kerry JP (2013) Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially -active packaging for potential food applications. Food Control 34:393–397. doi:10.1016/j.foodcont.2013.04.042

    Article  CAS  Google Scholar 

  • Gallo A, Montini T, Marelli M, Minguzzi A, Gombac V, Psaro R, Fornasiero P, Dal Santo V (2012) H2 production by renewables photo reforming on Pt–Au/TiO2 catalysts activated by reduction. Chem Sus Chem 5:1800–1811. doi:10.1002/cssc.201200085

    Article  CAS  Google Scholar 

  • Ghazali M, Nawawi M, Huang RYM (1997) Pervaporation dehydration of isopropanol with chitosan membranes. J Membr Sci 124:53–62. doi:10.1016/S0376-7388(96)00216-5

    Article  Google Scholar 

  • Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56:1639–1657. doi:10.1007/s11434-011-4476-1

    Article  CAS  Google Scholar 

  • Hamdi A, Boufi S, Bouattour S (2015) Phthalocyanine/chitosan–TiO2 photocatalysts: characterization and photocatalytic activity. Appl Surf Sci 339:128–136. doi:10.1016/j.apsusc.2015.02.102

    Article  CAS  Google Scholar 

  • Herrmann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129. doi:10.1016/S0920-5861(99)00107-8

    Article  CAS  Google Scholar 

  • Hong PZ, Li SD, Ou CY, Li CP, Yang L, Zhang CH (2007) Thermogravimetric analysis of chitosan. J Appl Polym Sci 105:547–551. doi:10.1002/app.25920

    Article  CAS  Google Scholar 

  • Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer C (2003) Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J Phys Chem B 107:4545–4549. doi:10.1021/jp0273934

    Article  CAS  Google Scholar 

  • In S, Orlov A, Garcia F, Tikhov M, Wright DS, Lambert RM (2006) Efficient visible light-active N-doped TiO2 photocatalysts by a reproducible and controllable synthetic route. Chem Commun 40:4236–4237. doi:10.1039/B610316B

    Article  Google Scholar 

  • Jaiswal A, Ghosh SS, Chattopadhyay A (2012) Quantum dot impregnated-chitosan film for heavy metal ion sensing and removal. Langmuir 28:15687–15696. doi:10.1021/la3027573

    Article  CAS  Google Scholar 

  • Javaid S, Farrukh MA, Muneer I, Shahid M, Khaleeq-ur-Rahman M, Umar AA (2015) Influence of optical band gap and particle size on the catalytic properties of Sm/SnO2–TiO2 nanoparticles. Superlattices Microstruct 82:234–247. doi:10.1016/j.spmi.2015.01.038

    Article  CAS  Google Scholar 

  • Jiang R, Zhu HY, Chen HH, Yao J, Fu YQ, Zhang ZY, Xu YM (2014) Effect of calcination temperature on physical parameters and photocatalytic activity of mesoporous titania spheres using chitosan/poly (vinyl alcohol) hydrogel beads as a template. Appl Surf Sci 319:189–196. doi:10.1016/j.apsusc.2014.06.185

    Article  CAS  Google Scholar 

  • Knorr FJ, Mercado CC, McHale JL (2008) Trap-state distributions and carrier transport in pure and mixed-phase TiO2: influence of contacting solvent and interphasial electron transfer. J Phys Chem C 112:12786–12794. doi:10.1021/jp8039934

    Article  CAS  Google Scholar 

  • Kumar PS, Selvakumar M, Babu SG, Jaganathan SK, Karuthapandian S, Chattopadhyay S (2015) Novel CuO/chitosan nanocomposite thin film: facile handpicking recoverable, efficient and reusable heterogeneous photocatalyst. RSC Adv 5:57493–57501. doi:10.1039/C5RA08783J

    Article  Google Scholar 

  • Kuo Y, Klabunde KJ (2011) Hydrogen from ethanol solution under UV–Visible light. Photocatalysts produced by nitrating titanium nitride and indium oxide intimate mixtures to form Ti–In nitride composites. Appl Catal B 104:245–251. doi:10.1016/j.apcatb.2011.03.025

    Article  CAS  Google Scholar 

  • Mahdjoub N, Allen N, Kelly P, Vishnyakov V (2010) SEM and Raman study of thermally treated TiO2 anatase nanopowders: influence of calcination on photocatalytic activity. J Photochem Photobiol A 211:59–64. doi:10.1016/j.jphotochem.2010.02.002

    Article  CAS  Google Scholar 

  • Moro P, Stampachiacchiere S, Donzello MP, Fierro G, Moretti G (2015) A comparison of the photocatalytic activity between commercial and synthesized mesoporous and nanocrystalline titanium dioxide for 4-nitrophenol degradation: effect of phase composition, particle size, and addition of carbon nanotubes. Appl Surf Sci 359:293–305. doi:10.1016/j.apsusc.2015.09.120

    Article  CAS  Google Scholar 

  • Murdoch M, Waterhouse GIN, Nadeem MA, Metson JB, Keane MA, Howe RF, Llorca J, Idriss H (2011) The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat Chem 3:489–492. doi:10.1038/nchem.1048

    CAS  Google Scholar 

  • Nuernberg GB, Fajardo HV, Mezalira DZ, Casarin TJ, Probst LFD, Carreño NLV (2008) Preparation and evaluation of Co/Al2O3 catalysts in the production of hydrogen from thermo–catalytic decomposition of methane: influence of operating conditions on catalyst performance. Fuel 87:1698–1704. doi:10.1016/j.fuel.2007.08.005

    Article  CAS  Google Scholar 

  • Rengifo-Herrera JA, Kiwi J, Pulgarin C (2009) N, S co-doped and N-doped Degussa P-25 powders with visible light response prepared by mechanical mixing of thiourea and urea. Reactivity towards E. coli inactivation and phenol oxidation. J Photochem Photobiol A 205:109–115. doi:10.1016/j.jphotochem.2009.04.015

    Article  CAS  Google Scholar 

  • Salama HE, Saad GR, Sabaa MW (2015) Synthesis, characterization and biological activity of schiff bases based on chitosan and arylpyrazole moiety. Int J Biol Macromol 79:996–1003. doi:10.1016/j.ijbiomac.2015.06.009

    Article  CAS  Google Scholar 

  • Shahidi F, Arachi JKV, Jeon YJ (1999) Food applications of chitin and chitosan. Trends Food Sci Technol 10:37–51. doi:10.1016/S0924-2244(99)00017-5

    Article  CAS  Google Scholar 

  • Sheng Q, Cong Y, Yuan S, Zhang J, Anpo M (2006) Synthesis of bi-porous TiO2 with crystalline framework using a double surfactant system. Microporous Mesoporous Mater 95:220–225. doi:10.1016/j.micromeso.2006.05.033

    Article  CAS  Google Scholar 

  • Signini R, Campana Filho SP (2001) Características e propriedades de quitosanas purificadas nas formas neutra, acetato e cloridrato. Polímeros 11:58–64. doi:10.1590/S0104-14282001000200007

    Article  CAS  Google Scholar 

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems. Pure Appl Chem 57:603–619. doi:10.1351/pac198557040603

    Article  CAS  Google Scholar 

  • Suwa Y, Inagaki M, Naka S (1984) Polymorphic transformation of titanium dioxide by mechanical grinding. J Mater Sci 19:1397–1405. doi:10.1007/BF00563034

    Article  CAS  Google Scholar 

  • Takatsuji W, Yoshida H (1998) Adsorption of organic acids on polyaminated highly porous chitosan: equilibrium. Ind Eng Chem Res 37:1300–1309. doi:10.1021/ie970567x

    Article  CAS  Google Scholar 

  • Tian G, Fu H, Jing L, Tian C (2009) Synthesis and photocatalytic activity of stable nanocrystalline TiO2 with high crystallinity and large surface area. J Hazard Mater 161:1122–1130. doi:10.1016/j.jhazmat.2008.04.065

    Article  CAS  Google Scholar 

  • Uvarov V, Popov I (2013) Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater Charact 85:111–123. doi:10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

  • Valentini A, Probst LFD, Carreño N, Leite ER, Pontes FM, Longo E, Schreiner WH, Lisboa-Filho PN (2003) Estudo microestrutural do catalisador Ni/γ-Al2O3− efeito da adição de CeO2 na reforma do metano com dióxido de carbono. Quim Nova 26:648–654. doi:10.1590/S0100-40422003000500005

    Article  CAS  Google Scholar 

  • Wang C-Y, Yang C-H, Huang K-S, Yeh C-S, Wang AHJ, Chen C-H (2013) Electrostatic droplets assisted in situ synthesis of superparamagnetic chitosan microparticles for magnetic-responsive controlled drug release and copper ion removal. J Mater Chem B 1:2205–2212. doi:10.1039/C3TB00467H

    Article  CAS  Google Scholar 

  • Yang D, Li J, Jiang Z, Lu L, Chen X (2009) Chitosan/TiO2 nanocomposite pervaporation membranes for ethanol dehydration. Chem Eng Sci 64:3130–3137. doi:10.1016/j.ces.2009.03.042

    Article  CAS  Google Scholar 

  • Yoong LS, Chong FK, Dutta BK (2009) Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy 34:1652–1661. doi:10.1016/j.energy.2009.07.024

    Article  CAS  Google Scholar 

  • Yu J, Yu H, Cheng B, Trapalis C (2006) Effects of calcination temperature on the microstructures and photocatalytic activity of titanate nanotubes. J Mol Catal A: Chem 249:135–142. doi:10.1016/j.molcata.2006.01.003

    Article  CAS  Google Scholar 

  • Yun HJ, Lee DM, Yu S, Yoon J, Park H-J, Yi J (2013) Effect of valence band energy on the photocatalytic performance of N-doped TiO2 for the production of O2 via the oxidation of water by visible light. J Mol Catal A: Chem 378:221–226. doi:10.1016/j.molcata.2013.06.016

    Article  CAS  Google Scholar 

  • Yun D, Zhao Y, Abdullahi I, Herrera JE (2014) The effect of interstitial nitrogen in the activity of the VOx/N-TiO2 catalytic system for ethanol partial oxidation. J Mol Catal A: Chem 390:169–177. doi:10.1016/j.molcata.2014.03.022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The team appreciates the support received from the ITP/UNIT, MCT/CNPq nº 046/2010 CNPq/MICINN-Spain, BNB, REDE H2 and ICP/CSIC. The present work was performed within the research program supported by the MICINN (Spain) and ICOOP-CSIC under Projects PIB2010Z-00531 and COOPA20083, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marluce S. Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, A.C.M., Santos, M.S., Brandão, L.M.S. et al. Chitosan-modified TiO2 as photocatalyst for ethanol reforming under visible light. Chem. Pap. 71, 1129–1141 (2017). https://doi.org/10.1007/s11696-016-0095-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0095-2

Keywords

Navigation