Chemical Papers

, Volume 71, Issue 1, pp 161–170 | Cite as

Synthesis of multiarm star block copolymers via simplified electrochemically mediated ATRP

  • Paweł ChmielarzEmail author
Original Paper


Star-shaped polymers were received using β-cyclodextrin (β-CD) as core, and methyl methacrylate (MMA) arms via a simplified electrochemically mediated ATRP (seATRP). To demonstrate the living nature of the seATRP, star multiblock copolymers were successfully prepared by chain extension of the ω-functional PMMA arms with a tert-butyl acrylate (tBA), and respectively, n-butyl acrylate (BA). Novelty of this work is that the β-CD-PMMA-b-PtBA-b-PBA multiarm star block copolymers were synthesized for the first time via seATRP procedure, utilizing 4 × 10−6 mol% of CuII complex. The results from 1H NMR spectral studies support the formation of 21-arm star (co)polymers. Furthermore, the GPC traces of the arms detached from synthesized star-like (co)polymers confirms the absence of star–star coupling reactions during seATRP. It was shown as an advantage over other ATRP methods–low catalyst concentrations and narrow molecular mass distributions, while maintaining well-defined composition.


Polymer synthesis seATRP Multiarm cyclodextrin-based star copolymers 



Financial support from U-553/DS is acknowledged. NMR spectra were recorded in the Laboratory of Spectrometry, Faculty of Chemistry, Rzeszow University of Technology and were financed from DS budget.


  1. Abraham S, Choi JH, Ha C-S, Kim I (2007) Synthesis of star polymers via nitroxide mediated free-radical polymerization: A “core-first” approach using resorcinarene-based alkoxyamine initiators. J Polym Sci Part A Polym Chem 45:5559–5572. doi: 10.1002/pola.22302 CrossRefGoogle Scholar
  2. Adeli M, Zarnegar Z, Kabiri R (2008) Amphiphilic star copolymers containing cyclodextrin core and their application as nanocarrier. Eur Polym J 44:1921–1930. doi: 10.1016/j.eurpolymj.2008.03.028 CrossRefGoogle Scholar
  3. Ata S, Dhara P, Mukherjee R, Singha NK (2016) Thermally amendable and thermally stable thin film of POSS tethered poly(methyl methacrylate) (PMMA) synthesized by ATRP. Eur Polym J 75:276–290. doi: 10.1016/j.eurpolymj.2015.12.010 CrossRefGoogle Scholar
  4. Blencowe A, Tan JF, Goh TK, Qiao GG (2009) Core cross-linked star polymers via controlled radical polymerisation. Polymer 50:5–32. doi: 10.1016/j.polymer.2008.09.049 CrossRefGoogle Scholar
  5. Cai M, Zhang Z, Su X, Dong H, Zhong Z, Zhuo R (2014) Guanidinated multi-arm star polyornithines with a polyethylenimine core for gene delivery. Polymer 55:4634–4640. doi: 10.1016/j.polymer.2014.07.037 CrossRefGoogle Scholar
  6. Cheng G, Böker A, Zhang M, Krausch G, Müller AHE (2001) Amphiphilic cylindrical core-shell brushes via a “grafting from” process using ATRP. Macromolecules 34:6883–6888. doi: 10.1021/ma0013962 CrossRefGoogle Scholar
  7. Chmielarz P, Krys P, Park S, Matyjaszewski K (2015a) PEO-b-PNIPAM copolymers via SARA ATRP and eATRP in aqueous media. Polymer 71:143–147. doi: 10.1016/j.polymer.2015.06.042 CrossRefGoogle Scholar
  8. Chmielarz P, Sobkowiak A, Matyjaszewski K (2015b) A simplified electrochemically mediated ATRP synthesis of PEO-b-PMMA copolymers. Polymer 77:266–271. doi: 10.1016/j.polymer.2015.09.038 CrossRefGoogle Scholar
  9. Chmielarz P, Park S, Sobkowiak A, Matyjaszewski K (2016) Synthesis of β-cyclodextrin-based star polymers via a simplified electrochemically mediated ATRP. Polymer 88:36–42. doi: 10.1016/j.polymer.2016.02.021 CrossRefGoogle Scholar
  10. Deng J, Wu Z, He Q, Yang W (2008) Photo-induced polymerization of methyl methacrylate/cyclodextrin complex in aqueous solution. Polym Adv Technol 19:1649–1655. doi: 10.1002/pat.1183 CrossRefGoogle Scholar
  11. Dufour B, Koynov K, Pakula T, Matyjaszewski K (2008) PBA-PMMA 3-arm star block copolymer thermoplastic elastomers. Macromol Chem Phys 209:1686–1693. doi: 10.1002/macp.200800151 CrossRefGoogle Scholar
  12. Fernandes ALP, Martins RR, da Trindade Neto CG, Pereira MR, Fonseca JLC (2003) Characterization of polyelectrolyte effect in poly(acrylic acid) solutions. J Appl Polym Sci 89:191–196. doi: 10.1002/app.12175 CrossRefGoogle Scholar
  13. Glöckner P, Schollmeyer D, Ritter H (2002). X-ray diffraction analysis of butyl- and isobornyl acrylate/heptakis(2,6-di-O-methyl)-β-cyclodextrin complexes and correlation to 1H NMR-spectra. Des Monomers Polym 5:163–172. DOI:  10.1163/156855502760157890
  14. Gou P-F, Zhu W-P, Xu N, Shen Z-Q (2008) Synthesis and characterization of well-defined cyclodextrin-centered seven-arm star poly(ε-caprolactone)s and amphiphilic star poly(ε-caprolactone-b-ethylene glycol)s. J Polym Sci Part A Polym Chem 46:6455–6465. doi: 10.1002/pola.22955 CrossRefGoogle Scholar
  15. Hu J, Zheng S, Mao X, Xu X (2012) Soap-free emulsion polymerization of n-butyl acrylate in aqueous solution in the presence of α- and methylated β-cyclodextrin. Polym Bull 69:1041–1051. doi: 10.1007/s00289-012-0807-x CrossRefGoogle Scholar
  16. Huang B, Chen M, Zhou S, Wu L (2015) Synthesis and properties of clickable A(B-b-C)20 miktoarm star-shaped block copolymers with a terminal alkyne group. Polym Chem 6:3913–3917. doi: 10.1039/C5PY00338E CrossRefGoogle Scholar
  17. Karaky K, Reynaud S, Billon L, François J, Chreim Y (2005) Organosoluble star polymers from a cyclodextrin core. J Polym Sci Part A Polym Chem 43:5186–5194. doi: 10.1002/pola.21012 CrossRefGoogle Scholar
  18. Kepola EJ, Loizou E, Patrickios CS, Leontidis E, Voutouri C, Stylianopoulos T, Wesdemiotis C (2015) Amphiphilic polymer conetworks based on end-linked “core-first” star block copolymers: structure formation with long-range order. ACS Macro Lett 4:1163–1168. doi: 10.1021/acsmacrolett.5b00608 CrossRefGoogle Scholar
  19. Król P, Chmielarz P (2014) Recent advances in ATRP methods in relation to the synthesis of copolymer coating materials. Prog Org Coat 77:913–948. doi: 10.1016/j.porgcoat.2014.01.027 CrossRefGoogle Scholar
  20. Li J, Xiao H (2005) An efficient synthetic-route to prepare [2,3,6-tri-O-(2-bromo-2-methylpropionyl]-β-cyclodextrin). Tetrahedron Lett 46:2227–2229. doi: 10.1016/j.tetlet.2005.02.027 CrossRefGoogle Scholar
  21. Li Q, Bao Y, Wang H, Du F, Li Q, Jin B, Bai R (2013) A facile and highly efficient strategy for esterification of poly(meth)acrylic acid with halogenated compounds at room temperature promoted by 1,1,3,3-tetramethylguanidine. Polym Chem 4:2891–2897. doi: 10.1039/C3PY00155E CrossRefGoogle Scholar
  22. Li S, Xiao M, Zheng A, Xiao H (2014) Synthesis and characterization of a novel water-soluble cationic diblock copolymer with star conformation by ATRP. Mater Sci Eng C 43:350–358. doi: 10.1016/j.msec.2014.06.031 CrossRefGoogle Scholar
  23. Lin CY, Coote ML, Petit A, Richard P, Poli R, Matyjaszewski K (2007) Ab initio study of the penultimate effect for the ATRP activation step using propylene, methyl acrylate, and methyl methacrylate monomers. Macromolecules 40:5985–5994. doi: 10.1021/ma070911u CrossRefGoogle Scholar
  24. Liu C, Wang G, Zhang Y, Huang J (2008a) Preparation of star polymers of hyperbranched polyglycerol core with multiarms of PS-b-PtBA and PS-b-PAA. J Appl Polym Sci 108:777–784. doi: 10.1002/app.27724 CrossRefGoogle Scholar
  25. Liu J, Liu H, Jia Z, Bulmus V, Davis TP (2008b) An approach to biodegradable star polymeric architectures using disulfide coupling. Chem Commun 48:6582–6584. doi: 10.1039/B817037A CrossRefGoogle Scholar
  26. Liu F, Wan D, Tang T (2013) Synthesis and rheological investigation of model symmetric 3-arm star polyethylene. Chin J Polym Sci 32:51–63. doi: 10.1007/s10118-014-1370-8 CrossRefGoogle Scholar
  27. Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–4039. doi: 10.1021/Ma3001719 CrossRefGoogle Scholar
  28. Matyjaszewski K, Nakagawa Y, Jasieczek CB (1998a) Polymerization of n-butyl acrylate by atom transfer radical polymerization. Remarkable effect of ethylene carbonate and other solvents. Macromolecules 31:1535–1541. doi: 10.1021/ma971444r CrossRefGoogle Scholar
  29. Matyjaszewski K, Shipp DA, Wang J-L, Grimaud T, Patten TE (1998b) Utilizing Halide exchange to improve control of atom transfer radical polymerization. Macromolecules 31:6836–6840. doi: 10.1021/ma980476r CrossRefGoogle Scholar
  30. Mauricio MR, Otsuka I, Borsali R, Petzhold CL, Cellet TSP, Carvalho GMD, Rubira AF (2011) Synthesis of star poly(N-isopropylacrylamide) by β-cyclodextrin core initiator via ATRP approach in water. React Funct Polym 71:1160–1165. doi: 10.1016/j.reactfunctpolym.2011.09.004 CrossRefGoogle Scholar
  31. Merrill EW (1993) Poly(ethylene oxide) star molecules—synthesis, characterization, and applications in medicine and biology. J Biomater Sci Polym Ed 5:1–11. doi: 10.1163/156856294X00617 CrossRefGoogle Scholar
  32. Nafee N, Hirosue M, Loretz B, Wenz G, Lehr CM (2015) Cyclodextrin-based star polymers as a versatile platform for nanochemotherapeutics: enhanced entrapment and uptake of idarubicin. Colloids Surf B 129:30–38. doi: 10.1016/j.colsurfb.2015.03.014 CrossRefGoogle Scholar
  33. Neugebauer D, Sumerlin BS, Matyjaszewski K, Goodhart B, Sheiko SS (2004) How dense are cylindrical brushes grafted from a multifunctional macroinitiator? Polymer 45:8173–8179. doi: 10.1016/j.polymer.2004.09.069 CrossRefGoogle Scholar
  34. Ohno K, Wong B, Haddleton DM (2001) Synthesis of well-defined cyclodextrin-core star polymers. J Polym Sci Part A Polym Chem 39:2206–2214. doi: 10.1002/pola.1197 CrossRefGoogle Scholar
  35. Pan Y, Xue Y, Snow J, Xiao H (2015) Tailor-made antimicrobial/antiviral star polymer via ATRP of cyclodextrin and guanidine-based macromonomer. Macromol Chem Phys 216:511–518. doi: 10.1002/macp.201400525 CrossRefGoogle Scholar
  36. Pang X, Zhao L, Akinc M, Kim JK, Lin Z (2011) Novel amphiphilic multi-arm, star-like block copolymers as unimolecular micelles. Macromolecules 44:3746–3752. doi: 10.1021/ma200594j CrossRefGoogle Scholar
  37. Park S, Chmielarz P, Gennaro A, Matyjaszewski K (2015) Simplified electrochemically mediated atom transfer radical polymerization using a sacrificial anode. Angew Chem Int Ed 54:2388–2392. doi: 10.1002/anie.201410598 CrossRefGoogle Scholar
  38. Peng C-H, Kong J, Seeliger F, Matyjaszewski K (2011) Mechanism of halogen exchange in ATRP. Macromolecules 44:7546–7557. doi: 10.1021/ma201035u CrossRefGoogle Scholar
  39. Peng C-H, Yang T-Y, Zhao Y, Fu X (2014) Reversible deactivation radical polymerization mediated by cobalt complexes: recent progress and perspectives. Org Biomol Chem 12:8580–8587. doi: 10.1039/C4OB01427H CrossRefGoogle Scholar
  40. Plamper FA, Becker H, Lanzendörfer M, Patel M, Wittemann A, Ballauff M, Müller AHE (2005) Synthesis, characterization and behavior in aqueous solution of star-shaped poly(acrylic acid). Macromol Chem Phys 206:1813–1825. doi: 10.1002/macp.200500238 CrossRefGoogle Scholar
  41. Quadrat O, Horský J, Bradna P, Šňupárek JR, Baghaffar GA (2001) Thickening of butyl acrylate/styrene/2-hydroxyethyl methacrylate/acrylic acid lattices with dispersion of crosslinked ethyl acrylate/methacrylic acid copolymer. Prog Org Coat 42:188–193. doi: 10.1016/S0300-9440(01)00166-7 CrossRefGoogle Scholar
  42. Rwei S-P, Shu K-T, Way T-F, Chang S-M, Chiang W-Y, Pan W-C (2015) Synthesis and characterization of hyperbranched copolymers hyper-g-(NIPAAm-co-IAM) via ATRP. Colloid Polym Sci 294:291–301. doi: 10.1007/s00396-015-3775-5 CrossRefGoogle Scholar
  43. Sabadini E, do Carmo Egídio F, Cosgrove T (2013) More on polypseudorotaxanes formed between poly(ethylene glycol) and α-cyclodextrin. Langmuir 29:4664–4669. doi: 10.1021/la304910v CrossRefGoogle Scholar
  44. Sandeau A, Mazières S, Destarac M (2012) Well-defined macromolecular architectures through consecutive condensation and reversible-deactivation radical polymerizations. Polymer 53:5601–5618. doi: 10.1016/j.polymer.2012.07.068 CrossRefGoogle Scholar
  45. Setijadi E, Tao L, Liu J, Jia Z, Boyer C, Davis TP (2009) Biodegradable star polymers functionalized with β-cyclodextrin inclusion complexes. Biomacromolecules 10:2699–2707. doi: 10.1021/bm900646g CrossRefGoogle Scholar
  46. Shipp DA (2011) Reversible-deactivation radical polymerizations. Polym Rev 51:99–103. doi: 10.1080/15583724.2011.566406 CrossRefGoogle Scholar
  47. Sumerlin BS, Neugebauer D, Matyjaszewski K (2005) Initiation efficiency in the Synthesis of molecular brushes by grafting from via atom transfer radical polymerization. Macromolecules 38:702–708. doi: 10.1021/ma048351b CrossRefGoogle Scholar
  48. Uyar T, Havelund R, Nur Y, Balan A, Hacaloglu J, Toppare L, Kingshott P (2010) Cyclodextrin functionalized poly(methyl methacrylate) (PMMA) electrospun nanofibers for organic vapors waste treatment. J Membr Sci 365:409–417. doi: 10.1016/j.memsci.2010.09.037 CrossRefGoogle Scholar
  49. Williams VA, Ribelli TG, Chmielarz P, Park S, Matyjaszewski K (2015) A silver bullet: elemental silver as an efficient reducing agent for atom transfer radical polymerization of acrylates. J Am Chem Soc 137:1428–1431. doi: 10.1021/ja512519j CrossRefGoogle Scholar
  50. Xia JH, Matyjaszewski K (1999) Controlled/”living’’ radical polymerization. Atom transfer radical polymerization catalyzed by copper(I) and picolylamine complexes. Macromolecules 32:2434–2437. doi: 10.1021/Ma981694n CrossRefGoogle Scholar
  51. Xiong Q, Zhang M, Zhang Z, Shen W, Liu L, Zhang Q (2014) Anti-tumor drug delivery system based on cyclodextrin-containing pH-responsive star polymer: in vitro and in vivo evaluation. Int J Pharm 474:232–240. doi: 10.1016/j.ijpharm.2014.08.018 CrossRefGoogle Scholar
  52. Xiu KM, Yang JJ, Zhao NN, Li JS, Xu FJ (2013) Multiarm cationic star polymers by atom transfer radical polymerization from β-cyclodextrin cores: influence of arm number and length on gene delivery. Acta Biomater 9:4726–4733. doi: 10.1016/j.actbio.2012.08.020 CrossRefGoogle Scholar
  53. Xu J, Liu S (2009) Synthesis of well-defined 7-arm and 21-arm poly(N-isopropylacrylamide) star polymers with β-cyclodextrin cores via click chemistry and their thermal phase transition behavior in aqueous solution. J Polym Sci Part A Polym Chem 47:404–419. doi: 10.1002/pola.23157 CrossRefGoogle Scholar
  54. Xue Z, He D, Xie X (2015) Iron-catalyzed atom transfer radical polymerization. Polym Chem 6:1660–1687. doi: 10.1039/C4PY01457J CrossRefGoogle Scholar
  55. Yang C, Li H, Goh SH, Li J (2007) Cationic star polymers consisting of α-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors. Biomaterials 28:3245–3254. doi: 10.1016/j.biomaterials.2007.03.033 CrossRefGoogle Scholar
  56. Yin H, Zhao F, Zhang D, Li J (2015) Hyaluronic acid conjugated β-cyclodextrin-oligoethylenimine star polymer for CD44-targeted gene delivery. Int J Pharm 483:169–179. doi: 10.1016/j.ijpharm.2015.02.022 CrossRefGoogle Scholar
  57. Zhang M, Xiong Q, Chen J, Wang Y, Zhang Q (2013) A novel cyclodextrin-containing pH-responsive star polymer for nanostructure fabrication and drug delivery. Polym Chem 4:5086–5095. doi: 10.1039/C3PY00656E CrossRefGoogle Scholar
  58. Zheng Q, Zheng G-H, Pan C-Y (2006) Preparation of nano-sized poly(ethylene oxide) star microgels via reversible addition-fragmentation transfer polymerization in selective solvents. Polym Int 55:1114–1123. doi: 10.1002/pi.2089 CrossRefGoogle Scholar
  59. Zheng D, Pang X, Wang M, He Y, Lin C, Lin Z (2015) Unconventional route to hairy plasmonic/semiconductor sore/shell nanoparticles with precisely controlled dimensions and their use in solar energy conversion. Chem Mater 27:5271–5278. doi: 10.1021/acs.chemmater.5b01422 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  1. 1.Department of Physical Chemistry, Faculty of ChemistryRzeszów University of TechnologyRzeszówPoland

Personalised recommendations