Skip to main content

Advertisement

Log in

Preparation and characterization of (Pebax 1657 + silica nanoparticle)/PVC mixed matrix composite membrane for CO2/N2 separation

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this work, the films of poly(ether-block-amide) (Pebax 1657) and hydrophilic/hydrophobic silica nanoparticles (0–10 wt%) were coated on a poly(vinyl chloride) (PVC) ultrafiltration membrane to form new mixed matrix composite membranes (MMCMs) for CO2/N2 separation. The membranes were characterized by SEM, FTIR, DSC and XRD. Successful formation of a non-porous defect-free dense top layer with ~4 μm of thickness and also uniform dispersion of silica nanoparticles up to 8 wt% loading in Pebax matrix were confirmed by SEM images. The gas permeation results showed an increase in the permeance of all gases and an increase in ideal CO2/N2 selectivity with the increase in silica nanoparticle contents. Comparison between the incorporation of hydrophilic and hydrophobic silica nanoparticle into Pebax matrix revealed that the great enhancement of CO2 solubility is the key factor for the performance improvement of Pebax + silica nanoparticle membranes. The best separation performance of the hydrophilic silica nanoparticle-incorporated Pebax/PVC membrane for pure gases (at 1 bar and 25 °C) was obtained with a CO2 permeability of 124 barrer and an ideal CO2/N2 selectivity of 76, i.e., 63 and 35% higher than those of neat Pebax membrane, respectively. The corresponding values for hydrophobic silica nanoparticle-incorporated Pebax/PVC membrane were 107 barrer for CO2 permeability and 61 for ideal CO2/N2 selectivity. Also the performances of MMCMs improved upon pressure increase (1–10 bar) owing to the shift in plasticizing effect of CO2 towards the higher pressures. In addition, an increase in permeabilities with a decrease in ideal selectivity was observed upon temperature increase (25–50 °C) due to the intensification of chain mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Pebax:

Poly(ether-b-amide)

Pebax-IL:

Hydrophilic silica nanoparticle filled Pebax membranes

Pebax-OB:

Hydrophobic silica nanoparticle filled Pebax membranes

MMCM:

Mixed matrix composite membrane

SEM:

Scanning electron microscope

DSC:

Differential scanning calorimetery

FTIR:

Fourier transform infrared

XRD:

X-ray diffraction

V :

Dead-volume of permeate side

l :

Membrane thickness

D :

Diffusion coefficient

S :

Solubility coefficient

T g :

Glass transition temperature

X c :

Degree of crystallinity

ΔH 0m :

Heat of melting if the polymer is 100% crystalline

ΔH m :

Heat of melting of crystals

A :

Membrane area

R :

Universal gas constant

T :

Operating temperature

E d :

Activation energy for diffusion

ΔH s :

Heat of solution

E p :

Activation energy for permeation

π:

Permeance

π0 :

Pre-exponential term in permeance

References

  • Annual book of ASTM standard (F316-03, 2011) Standard test method for pore size characteristics of membrane filters by bubble point and mean flow pore test

  • Aroon MA, Ismail AF, Matsuura T, Montazer-Rahmati MM (2010) Performance studies of mixed matrix membranes for gas separation: a review. Sep Purif Technol 75:229–242. doi:10.1016/j.seppur.2010.08.023

    Article  CAS  Google Scholar 

  • Baker RW (2002) Future directions of membrane gas separation technology. Ind Eng Chem Res 41:1393–1411. doi:10.1021/ie0108088

    Article  CAS  Google Scholar 

  • Baker RW (2012) Membrane technology and applications, 3rd edn. Wiley, West Sussex

    Book  Google Scholar 

  • Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47:2109–2121. doi:10.1021/ie071083w

    Article  CAS  Google Scholar 

  • Bandehali S, Kargari A, Moghadassi A, Saneepur H, Ghanbari D (2014) Acrylonitrile–butadiene–styrene/poly (vinyl acetate)/nanosilica mixed matrix membrane for He/CH4 separation. Asia-Pac J Chem Eng 9:638–644. doi:10.1002/apj.1792

    Article  CAS  Google Scholar 

  • Barrer R, Rideal EK (1939) Activated diffusion in membranes. Trans Faraday Soc 35:644–656. doi:10.1039/TF9393500644

    Article  CAS  Google Scholar 

  • Bernardo P, Jansen JC, Bazzarelli F, Tasselli F, Fuoco A, Friess K, Izák P, Jarmarová V, Kačírková M, Clarizia G (2012) Gas transport properties of Pebax®/room temperature ionic liquid gel membranes. Sep Purif Technol 97:73–82. doi:10.1016/j.seppur.2012.02.041

    Article  CAS  Google Scholar 

  • Bondar VI, Freeman BD, Pinnau I (1999) Gas sorption and characterization of poly (ether-b-amide) segmented block copolymers. J Polym Sci Part B Polym Phys 37:2463–2475. doi:10.1002/(SICI)1099-0488(19990901)37:17<2463:AID-POLB18>3.0.CO;2-H

    Article  CAS  Google Scholar 

  • Bondar V, Freeman B, Pinnau I (2000) Gas transport properties of poly (ether-b-amide) segmented block copolymers. J Polym Sci Part B Polym Phys 38:2051–2062. doi:10.1002/1099-0488(20000801)38:15<2051:AID-POLB100>3.0.CO;2-D

    Article  CAS  Google Scholar 

  • Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, Fennell PS (2014) Carbon capture and storage update. Energy Environ Sci 7:130–189. doi:10.1039/C3EE42350F

    Article  CAS  Google Scholar 

  • Bounaceur R, Lape N, Roizard D, Vallieres C, Favre E (2006) Membrane processes for post-combustion carbon dioxide capture: a parametric study. Energy 31:2556–2570. doi:10.1016/j.energy.2005.10.038

    Article  CAS  Google Scholar 

  • Brunetti A, Scura F, Barbieri G, Drioli E (2010) Membrane technologies for CO2 separation. J Membr Sci 359:115–125. doi:10.1016/j.memsci.2009.11.040

    Article  CAS  Google Scholar 

  • Car A, Stropnik C, Yave W, Peinemann K-V (2008a) Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: performance with mixed gases. Sep Purif Technol 62:110–117. doi:10.1016/j.seppur.2008.01.001

    Article  CAS  Google Scholar 

  • Car A, Stropnik C, Yave W, Peinemann K-V (2008b) PEG modified poly (amide-b-ethylene oxide) membranes for CO2 separation. J Membr Sci 307:88–95. doi:10.1016/j.memsci.2007.09.023

    Article  CAS  Google Scholar 

  • Chung T-S, Jiang LY, Li Y, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 32:483–507. doi:10.1016/j.progpolymsci.2007.01.008

    Article  CAS  Google Scholar 

  • Feng S, Ren J, Hua K, Li H, Ren X, Deng M (2013) Poly (amide-12-b-ethylene oxide)/polyethylene glycol blend membranes for carbon dioxide separation. Sep Purif Technol 116:25–34. doi:10.1016/j.seppur.2013.05.002

    Article  CAS  Google Scholar 

  • Freeman BD (1999) Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 32:375–380. doi:10.1021/ma9814548

    Article  CAS  Google Scholar 

  • Frisch HL (1957) The time lag in diffusion. J Phys Chem 61:93–95. doi:10.1021/j150547a018

    Article  CAS  Google Scholar 

  • Gevers LE, Aldea S, Vankelecom IF, Jacobs PA (2006) Optimisation of a lab-scale method for preparation of composite membranes with a filled dense top-layer. J Membr Sci 281:741–746. doi:10.1016/j.memsci.2006.05.001

    Article  CAS  Google Scholar 

  • Ghosal K, Freeman BD (1994) Gas separation using polymer membranes: an overview. Polym Adv Technol 5:673–697. doi:10.1002/pat.1994.220051102

    Article  CAS  Google Scholar 

  • Goh PS, Ismail AF, Sanip SM, Ng BC, Aziz M (2011) Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep Purif Technol 81:243–264. doi:10.1016/j.seppur.2011.07.042

    Article  CAS  Google Scholar 

  • Hosseinkhani O, Kargari A, Sanaeepur H (2014) Facilitated transport of CO2 through Co(II)-S-EPDM ionomer membrane. J Membr Sci 469:151–161. doi:10.1016/j.memsci.2014.06.021

    Article  CAS  Google Scholar 

  • Hosseinzadeh Beiragh H, Omidkhah M, Abedini R, Khosravi T, Pakseresht S (2016) Synthesis and characterization of poly (ether-block-amide) mixed matrix membranes incorporated by nanoporous ZSM-5 particles for CO2/CH4 separation. Asia Pac J Chem Eng . doi:10.1002/apj.1973 (in press)

    Google Scholar 

  • Kargari A, Sanaeepur H (2015) Application of membrane gas separation processes in petroleum industry. In: Sinha S, Pant KK (eds) Advances in petroleum engineering, vol 1: refining. Studium Press LLC, Houston, pp 592–622

  • Kazama S, Morimoto S, Tanaka S, Mano H, Yashima T, Yamada K, Haraya K (2004) Cardo polyimide membranes for CO2 capture from flue gases. Greenh Gas Control Technol 1:75–82

    Google Scholar 

  • Kentish SE, Scholes CA, Stevens GW (2008) Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Pat Chem Eng 1:52–66

    Article  Google Scholar 

  • Khalilinejad I, Sanaeepur H, Kargari A (2015) Preparation of poly (ether-6-block amide)/PVC thin film composite membrane for CO2 separation: effect of top layer thickness and operating parameters. J Membr Sci Res 1:124–129

    Google Scholar 

  • Kim JH, Lee YM (2001) Gas permeation properties of poly (amide-6-b-ethylene oxide)–silica hybrid membranes. J Membr Sci 193:209–225. doi:10.1016/S0376-7388(01)00514-2

    Article  CAS  Google Scholar 

  • Kim JH, Ha SY, Lee YM (2001) Gas permeation of poly (amide-6-b-ethylene oxide) copolymer. J Membr Sci 190:179–193. doi:10.1016/S0376-7388(01)00444-6

    Article  CAS  Google Scholar 

  • Kohl AL, Nielsen R (1997) Gas purification, 5th edn. Gulf Professional Publishing, Texas

    Google Scholar 

  • Kulprathipanja S (2003) Mixed matrix membrane development. Ann N Y Acad Sci 984:361–369. doi:10.1111/j.1749-6632.2003.tb06012.x

    Article  CAS  Google Scholar 

  • Lackner KS (2010) Comparative impacts of fossil fuels and alternative energy sources. In: Hester RE, Harrison RM (eds) Carbon capture: sequestration and storage, vol 29, 1st edn. RSC Publishing, pp 1–40

  • Lau CH, Li P, Li F, Chung T-S, Paul DR (2013) Reverse-selective polymeric membranes for gas separations. Prog Polym Sci 38:740–766. doi:10.1016/j.progpolymsci.2012.09.006

    Article  CAS  Google Scholar 

  • Li Y, Wang S, Wu H, Wang J, Jiang Z (2012) Bioadhesion-inspired polymer–inorganic nanohybrid membranes with enhanced CO2 capture properties. J Mater Chem 22:19617–19620. doi:10.1039/C2JM33238H

    Article  CAS  Google Scholar 

  • Liu JY, Zhang XF, Zhang JF, Liu H, Li FQ (2013) Development status and energy penalty of carbon dioxide capture technologies. Adv Mater Res 864:1598–1601. doi:10.4028/www.scientific.net/AMR.864-867.1598

    Google Scholar 

  • Maginn EJ (2010) What to do with CO2. J Phys Chem Lett 1:3478–3479. doi:10.1021/jz101582c

    Article  CAS  Google Scholar 

  • Merkel T, Amo K, Baker R, Daniels R, Firat B, He Z, Lin H, Serbanescu A (2009) Membrane process to sequester CO2 from power plant flue gas. Membrane Technology and Research Inc, Menlo Park

    Book  Google Scholar 

  • Merkel TC, Lin H, Wei X, Baker R (2010) Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membr Sci 359:126–139. doi:10.1016/j.memsci.2009.10.041

    Article  CAS  Google Scholar 

  • Metz B, Davidson O, De Coninck H, Loos M, Meyer L (2005) IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. IPCC. Cambridge University Press: Cambridge, p 4

  • Mousavi SA, Sadeghi M, Motamed-Hashemi MMY, Chenar MP, Roosta-Azad R, Sadeghi M (2008) Study of gas separation properties of ethylene vinyl acetate (EVA) copolymer membranes prepared via phase inversion method. Sep Purif Technol 62:642–647. doi:10.1016/j.seppur.2008.02.030

    Article  CAS  Google Scholar 

  • Murali RS, Sridhar S, Sankarshana T, Ravikumar Y (2010) Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Ind Eng Chem Res 49:6530–6538. doi:10.1021/ie9016495

    Article  CAS  Google Scholar 

  • Murali RS, Ismail AF, Rahman MA, Sridhar S (2014) Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Sep Purif Technol 129:1–8. doi:10.1016/j.seppur.2014.03.017

    Article  Google Scholar 

  • Nasir R, Mukhtar H, Man Z, Mohshim DF (2013) Material advancements in fabrication of mixed-matrix membranes. Chem Eng Technol 36:717–727. doi:10.1002/ceat.201200734

    Article  CAS  Google Scholar 

  • Nguyen QT, Sublet J, Langevin D, Chappey C, Marais S, Valleton J-M, Poncin-Epaillard F (2010) CO2 permeation with Pebax®-based membranes for global warming reduction. In: Yampolskii Y, Freeman BD (eds) Membrane gas separation. Wiley, West Sussex, pp 254–277

    Google Scholar 

  • Peinemann KV, Johannsen G, Rios WY, Car A (2012) Polymer membrane: US Patents, No. US8317900 B2

  • Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–49. doi:10.1016/j.memsci.2005.12.062

    Article  CAS  Google Scholar 

  • Rabiee H, Ghadimi A, Mohammadi T (2015) Gas transport properties of reverse-selective poly (ether-b-amide6)/[Emim][BF4] gel membranes for CO2/light gases separation. J Membr Sci 476:286–302. doi:10.1016/j.memsci.2014.11.037

    Article  CAS  Google Scholar 

  • Ren X, Ren J, Li H, Feng S, Deng M (2012) Poly (amide-6-b-ethylene oxide) multilayer composite membrane for carbon dioxide separation. Int J Greenh Gas Control 8:111–120. doi:10.1016/j.ijggc.2012.01.017

    Article  CAS  Google Scholar 

  • Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39:817–861. doi:10.1016/j.progpolymsci.2014.01.003

    Article  CAS  Google Scholar 

  • Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400. doi:10.1016/j.memsci.2008.04.030

    Article  CAS  Google Scholar 

  • Rowe BW, Robeson LM, Freeman BD, Paul DR (2010) Influence of temperature on the upper bound: theoretical considerations and comparison with experimental results. J Membr Sci 360:58–69. doi:10.1016/j.memsci.2010.04.047

    Article  CAS  Google Scholar 

  • Sadeghi M, Khanbabaei G, Dehaghani AHS, Sadeghi M, Aravand MA, Akbarzade M, Khatti S (2008) Gas permeation properties of ethylene vinyl acetate–silica nanocomposite membranes. J Membr Sci 322:423–428. doi:10.1016/j.memsci.2008.05.077

    Article  CAS  Google Scholar 

  • Sadeghi M, Semsarzadeh MA, Moadel H (2009) Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles. J Membr Sci 331:21–30. doi:10.1016/j.memsci.2008.12.073

    Article  CAS  Google Scholar 

  • Sanaeepur H, Ebadi Amooghin A, Moghadassi A, Kargari A, Moradi S, Ghanbari D (2012) A novel acrylonitrile–butadiene–styrene/poly (ethylene glycol) membrane: preparation, characterization, and gas permeation study. Polym Adv Technol 23:1207–1218. doi:10.1002/pat.2031

    Article  CAS  Google Scholar 

  • Sanaeepur H, Kargari A, Nasernejad B (2014) Aminosilane-functionalization of a nanoporous Y-type zeolite for application in a cellulose acetate based mixed matrix membrane for CO2 separation. RSC Advances 4:63966–63976. doi:10.1039/C4RA08783F

    Article  CAS  Google Scholar 

  • Sanaeepur H, Nasernejad B, Kargari A (2015) Cellulose acetate/nano-porous zeolite mixed matrix membrane for CO2 separation. Greenh Gases Sci Technol 5:291–304. doi:10.1002/ghg.1478

    Article  CAS  Google Scholar 

  • Shekhawat D, Luebke DR, Pennline HW (2003) A review of carbon dioxide selective membranes. US Department of Energy, pp 1–93

  • Sridhar S, Suryamurali R, Smitha B, Aminabhavi T (2007) Development of crosslinked poly (ether-block-amide) membrane for CO2/CH4 separation. Colloids Surf A 297:267–274. doi:10.1016/j.colsurfa.2006.10.054

    Article  CAS  Google Scholar 

  • Takht Ravanchi M, Kargari A (2009) New advances in membrane technology. In: Jayanthakumaran K (ed) Advanced technologies, 1st edn. InTech, Rijeka, pp 369–394

    Google Scholar 

  • Takht Ravanchi M, Kaghazchi T, Kargari A (2009) Application of membrane separation processes in petrochemical industry: a review. Desalination 235:199–244. doi:10.1016/j.desal.2007.10.042

    Article  CAS  Google Scholar 

  • Vinh-Thang H, Kaliaguine S (2013) Predictive models for mixed-matrix membrane performance: a review. Chem Rev 113:4980–5028. doi:10.1021/cr3003888

    Article  CAS  Google Scholar 

  • Wang S, Liu Y, Huang S, Wu H, Li Y, Tian Z, Jiang Z (2014) Pebax–PEG–MWCNT hybrid membranes with enhanced CO2 capture properties. J Membr Sci 460:62–70. doi:10.1016/j.memsci.2014.02.036

    Article  CAS  Google Scholar 

  • Xu J, Xu Z-L (2002) Poly (vinyl chloride)(PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent. J Membr Sci 208:203–212. doi:10.1016/S0376-7388(02)00261-2

    Article  CAS  Google Scholar 

  • Yave W, Car A, Funari SS, Nunes SP, Peinemann K-V (2009) CO2-philic polymer membrane with extremely high separation performance. Macromolecules 43:326–333. doi:10.1021/ma901950u

    Article  Google Scholar 

  • Yave W, Car A, Wind J, Peinemann K-V (2010) Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO2 capture. Nanotechnology 21:395301. doi:10.1088/0957-4484/21/39/395301

    Article  Google Scholar 

  • Yu B, Cong H, Li Z, Tang J, Zhao XS (2013) Pebax-1657 nanocomposite membranes incorporated with nanoparticles/colloids/carbon nanotubes for CO2/N2 and CO2/H2 separation. J Appl Polym Sci 130:2867–2876. doi:10.1002/app.39500

    Article  CAS  Google Scholar 

  • Zhao L, Riensche E, Menzer R, Blum L, Stolten D (2008) A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture. J Membr Sci 325:284–294. doi:10.1016/j.memsci.2008.07.058

    Article  CAS  Google Scholar 

  • Zoppi R, Das Neves S, Nunes S (2000) Hybrid films of poly (ethylene oxide-b-amide-6) containing sol–gel silicon or titanium oxide as inorganic fillers: effect of morphology and mechanical properties on gas permeability. Polymer 41:5461–5470. doi:10.1016/S0032-3861(99)00751-X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kargari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilinejad, I., Kargari, A. & Sanaeepur, H. Preparation and characterization of (Pebax 1657 + silica nanoparticle)/PVC mixed matrix composite membrane for CO2/N2 separation. Chem. Pap. 71, 803–818 (2017). https://doi.org/10.1007/s11696-016-0084-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0084-5

Keywords

Navigation