Chemical Papers

, Volume 71, Issue 1, pp 149–159 | Cite as

Luminescent Eu-doped GdVO4 nanocrystals as optical markers for anti-counterfeiting purposes

  • Elisa MorettiEmail author
  • Giorgia Pizzol
  • Marina Fantin
  • Francesco Enrichi
  • Paolo Scopece
  • Manuel Ocaña
  • Stefano Polizzi
Original Paper


Luminescent Eu:GdVO4 nanoparticles, with an average size of 60 nm, were deposited first on monocrystalline silicon wafers, then on four different natural stone materials, by a spray-coating technique and a silica layer was subsequently deposited by atmospheric pressure plasma jet to protect the luminescent layer and improve its adhesion to the substrate. The luminescent films were characterized by photoluminescence excitation and emission, while the surface morphology was examined by FEG-SEM microscopy and spectroscopic ellipsometry to determine the coating thickness. The optical appearance of the coatings was also evaluated by colorimetric measurements and the efficacy of the fixing action of the silica layer was estimated by PL measurements performed before and after a Scotch™ tape peeling test. The proposed methodology, easily applied on the surface of stone supports, has led to the realization of a luminescent film displaying good mechanical properties, transparent and undetectable in the presence of visible light, but easily activated by UV light source, indicating that the Eu:GdVO4 nanophosphors could be used as luminescent nanotags for a reliable anti-counterfeiting technology.


Eu-doped nanophosphors Optical identification markers Spray deposition Atmospheric pressure plasma jet 



Ca' Foscari University of Venice and Consortium INSTM are acknowledged for financial support. Dr. Alessandro Patelli, coordinator of the PANNA European Project (Grant Agreement No 282998) is acknowledged for having inspired the identification marker applicability. Dr. Eleonora Balliana is gratefully acknowledged for providing stone material samples.


  1. Andres J, Hersch RD, Moser J-E, Chauvin A-S (2014) A new anti-counterfeiting feature relying on invisible luminescent full color images printed with lanthanide-based inks. Adv Funct Mater 24:5029–5036. doi: 10.1002/adfm.201400298 CrossRefGoogle Scholar
  2. Back M, Boffelli M, Massari A, Marin R, Enrichi F, Riello P (2013) Energy transfer between Tb3+ and Eu3+ in co-doped Y2O3 nanocrystals prepared by Pechini method. J Nanoparticles Res 15:1753. doi: 10.1007/s11051-013-1753-8 CrossRefGoogle Scholar
  3. Beaurepaire E, Buissette V, Sauviat M, Giaume D, Lahlil K, Mercuri A, Casanova D, Huignard A, Martin J, Gacoin T, Boilot J-P, Alexandrou A (2004) Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level. Nano Lett 4:2079–2083. doi: 10.1021/nl049105g CrossRefGoogle Scholar
  4. Beggio A, Fantin M, Scopece P, Surpi A, Patelli A, Benedetti A, Cristofori D, Enrichi F (2015) Incorporation of Eu-Tb codoped nanophosphors in silica-based coatings assisted by atmospheric pressure plasma jet technology. Thin Solid Films 578:38–44. doi: 10.1016/j.tsf.2015.02.014 CrossRefGoogle Scholar
  5. Blumenthal T, Meruga J, May PS, Kellar J, Cross W, Ankireddy K, Vunnam S, Luu QN (2012) Patterned direct-write and screen-printing of NIR-to-visible upconverting inks for security applications. Nanotechnology 23:185305–185312. doi: 10.1088/0957-4484/23/18/185305 CrossRefGoogle Scholar
  6. Casanova D, Giaume D, Moreau M, Martin JL, Gacoin T, Boilot J-P, Alexandrou A (2007) Counting the number of proteins coupled to single nanoparticles. J Am Chem Soc 129:12592–12593. doi: 10.1021/ja0731975 CrossRefGoogle Scholar
  7. Creran B, Yan B, Moyano DF, Gilbert MM, Vachet RW, Rotello VM (2012) Laser desorption ionization mass spectrometric imaging of mass barcoded gold nanoparticles for security applications. Chem Commun 48:4543–4545. doi: 10.1039/C2CC30499F CrossRefGoogle Scholar
  8. Dhahri A, Horchani-Naifer K, Benedetti A, Enrichi F, Ferid M (2012) Combustion synthesis and photoluminescence properties of LaAlO3 nanophosphors doped with Yb3+ ions. Opt Mater 34:1742–1746. doi: 10.1016/j.optmat.2012.04.003 CrossRefGoogle Scholar
  9. Eberlin LS, Haddad R, Neto RCS, Cosso RG, Maia DRJ, Maldaner AO, Zacca JJ, Sanvido GB, Romao W, Vaz BG, Ifa DR, Dill A, Cooks RG, Eberlin MN (2010) Instantaneous chemical profiles of banknotes by ambient mass spectrometry. Analyst 135:2533–2539. doi: 10.1039/c0an00243g CrossRefGoogle Scholar
  10. Enrichi F, Riccò R, Meneghello A, Pierobon R, Cretaio E, Marinello F, Schiavuta P, Parma A, Riello P, Benedetti A (2010) Investigation of luminescent dye-doped or rare-earth-doped monodisperse silica nanospheres for DNA microarray labelling. Opt Mater 32:1652–1658. doi: 10.1016/j.optmat.2010.04.026 CrossRefGoogle Scholar
  11. Escudero A, Moretti E, Ocaña M (2014) Synthesis and luminescence of uniform europium-doped bismuth fluoride and bismuth oxyfluoride particles with different morphologies. Cryst Eng Comm 16:3274–3283. doi: 10.1039/C3CE42462F CrossRefGoogle Scholar
  12. Escudero A, Carrillo-Carrion C, Zyuzin MV, Ashraf S, Hartmann R, Nunez NO, Ocana M, Parak WJ (2016) Synthesis and functionalization of monodisperse near-ultraviolet and visible excitable multifunctional Eu3+, Bi3+:REVO4 nanophosphors for bioimaging and biosensing applications. Nanoscale 8:12221–12236. doi: 10.1039/C6NR03369E CrossRefGoogle Scholar
  13. Głuchowski P, Stręk W, Lastusaari M, Hölsä J (2015) Optically stimulated persistent luminescence of europium-doped LaAlO3 nanocrystals. Phys Chem Chem Phys 17:17246–17252. doi: 10.1039/C5CP00234F CrossRefGoogle Scholar
  14. Gupta BK, Haranath D, Saini S, Singh VN, Shanker V (2010) Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications. Nanotechnology 21:055607. doi: 10.1088/0957-4484/21/5/055607 CrossRefGoogle Scholar
  15. Hunt RWG (2004) The reproduction of colour, 6th edn. Wiley-Interscience Ed., New York. ISBN 978-0-470-02425-6CrossRefGoogle Scholar
  16. Kim M-J, Huh Y-D (2011) Preparation and photoluminescence of GdVO4: Eu nanophosphors for flexible and transparent displays. Bull Korean Chem Soc 32:4454–4457. doi: 10.5012/bkcs.2011.32.12.4454 CrossRefGoogle Scholar
  17. Kim WJ, Nyk M, Prasad PN (2009) Color-coded multilayer photopatterned microstructures using lanthanide (III) ion co-doped NaYF4 nanoparticles with upconversion luminescence for possible applications in security. Nanotechnology 20:185301–185307. doi: 10.1088/0957-4484/20/18/185301 CrossRefGoogle Scholar
  18. Kim SY, Won Y-H, Jang HS (2015) A strategy to enhance Eu3+ emission from LiYF4: Eu nanophosphors and green-to-orange multicolor tunable, transparent nanophosphor-polymer composites. Sci Rep 5:7866. doi: 10.1038/srep07866 CrossRefGoogle Scholar
  19. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110:2620–2640. doi: 10.1021/cr900263j CrossRefGoogle Scholar
  20. Liu G, Jacquier B (2005) Spectroscopic properties of rare earths in optical materials. Springer, BerlinGoogle Scholar
  21. Liu YS, Tu DT, Zhu HM, Chen XY (2013) Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev 42:6924–6958. doi: 10.1039/C3CS60060B CrossRefGoogle Scholar
  22. Llevot A, Astruc D (2012) Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem Soc Rev 41:242–257. doi: 10.1039/c1cs15080d CrossRefGoogle Scholar
  23. Marcus RT (1998) The measurement of color. In: Nassau K (ed) Color for science, art and technology. Elsevier, Amsterdam, pp 31–96CrossRefGoogle Scholar
  24. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544. doi: 10.1126/science.1104274 CrossRefGoogle Scholar
  25. Montgomery CP, Murray BS, New EJ, Pal R, Parker D (2009) Cell-penetrating metal complex optical probes: targeted and responsive systems based on lanthanide luminescence. Acc Chem Res 42:925–937. doi: 10.1021/ar800174z CrossRefGoogle Scholar
  26. Moretti E, Talon A, Storaro L, Le Donne A, Binetti S, Benedetti A, Polizzi S (2014) Concentration quenching and photostability in Eu(dbm)3phen embedded in mesoporous silica nanoparticles. J Lumin 146:178–185. doi: 10.1016/j.jlumin.2013.09.059 CrossRefGoogle Scholar
  27. Moretti E, Pizzol G, Fantin M, Enrichi F, Scopece P, Nuñez N, Ocaña M, Benedetti A, Polizzi S (2016) Deposition of silica protected luminescent layers of Eu:GdVO4 nanoparticles assisted by atmospheric pressure plasma jet. Thin Solid Films 598:88–94. doi: 10.1016/j.tsf.2015.11.061 CrossRefGoogle Scholar
  28. Mottana A, Crespi R, Liborio G (2011) Minerali e rocce. Mondadori Ed., MilanGoogle Scholar
  29. Nassau K (1993) The physics and chemistry of color, the fifteen causes of color. Wiley, New YorkGoogle Scholar
  30. Nuñez NO, Rivera S, Alcantara D, de la Fuente JM, García-Sevillano J, Ocaña M (2013) Surface modified Eu:GdVO4 nanocrystals for optical and MRI imaging. Dalton Trans 42:10725–10734. doi: 10.1039/C3DT50676B CrossRefGoogle Scholar
  31. Pizzi A, Mittal KL (2003) Handbook of adhesive technology, 2nd edn. Marcel Dekker Inc., New York. ISBN 0-8247-0986-1Google Scholar
  32. Prime EL, Solomon DH (2010) Australia’s plastic banknotes: fighting counterfeit currency. Angew Chem Int Ed 49:3726–3736. doi: 10.1002/anie.200904538 CrossRefGoogle Scholar
  33. Schläpfer K (1993) Farbmetrik in der Reproduktionstechnik und im Mehrfarbendruck, 2nd edn. UGRA, St. GallenGoogle Scholar
  34. Scopece P, Viaro A, Sulcis R, Kulyk I, Patelli A, Guglielmi M (2009) SiOx-based gas barrier coatings for polymer substrates by atmospheric pressure plasma jet deposition. Plasma Process Polym 6–1:S705–S710. doi: 10.1002/ppap.200931707 CrossRefGoogle Scholar
  35. Shen J, Sun L-D, Zhu J-D, Wei L-H, Sun H-F, Yan C-H (2010) Biocompatible bright YVO4: Eu nanoparticles as versatile optical bioprobes. Adv Funct Mater 20:3708–3714. doi: 10.1002/adfm.201001264 CrossRefGoogle Scholar
  36. Sojka B, Podhorodecki A, Banski M, Misiewicz J, Drobczynski S, Dumych T, Lutsyk MM, Lutsyk A, Bilyy R (2016) β-NaGdF4:Eu3+ nanocrystal markers for melanoma tumor imaging. RSC Adv 6:57854–57862. doi: 10.1039/C6RA10351K CrossRefGoogle Scholar
  37. Stouwdam JW, Raudsepp M, van Veggel FCJM (2005) Colloidal nanoparticles of Ln3+ doped LaVO4: energy transfer to visible and near infrared-emitting lanthanide ions. Langmuir 21:7003–7008. doi: 10.1021/la0505162 CrossRefGoogle Scholar
  38. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544CrossRefGoogle Scholar
  39. Wyszecki G, Stiles WS (2000) Color science: concepts and methods, quantitative data and formulae. Wiley-Interscience Ed, New York. ISBN 0471399183Google Scholar
  40. Yap AU, Sim CP, Loh WL, Teo JH (1999) Human-eye versus computerized color matching. Oper Dent 24:358–363Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Elisa Moretti
    • 1
    Email author
  • Giorgia Pizzol
    • 1
  • Marina Fantin
    • 2
  • Francesco Enrichi
    • 1
    • 2
    • 3
    • 4
  • Paolo Scopece
    • 2
  • Manuel Ocaña
    • 5
  • Stefano Polizzi
    • 1
    • 6
  1. 1.Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca’ Foscari Venezia, INSTM Venice Research UnitMestre VeniceItaly
  2. 2.Nanofab-Veneto NanotechMarghera (Venice)Italy
  3. 3.Museo Storico della Fisica e Centro Studi e Ricerche Enrico FermiRomeItaly
  4. 4.Division of Materials Science, Department of Engineering Sciences and MathematicsLuleå University of TechnologyLuleåSweden
  5. 5.Instituto de Ciencia de Materiales de Sevilla, CSICSevillaSpain
  6. 6.Centro di Microscopia Elettronica “Giovanni Stevanato”Ca’ Foscari University of VeniceMestre VeniceItaly

Personalised recommendations