Skip to main content

Advertisement

Log in

Conducting polymer hydrogels

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Conducting polymer hydrogels are gels, which are swollen with water, and contain a conducting polymer along with a supporting polymer as constituents. Polyaniline, polypyrrole or poly(3,4-ethylenedioxythiophene) represent the conducting moiety, while water-soluble polymers the other part. Various ways of hydrogel preparation are reviewed. The properties, such as mixed electronic and ionic conductivity, redox activity, and responsivity, are conveniently combined with materials properties afforded by supporting polymers, such as elasticity, mechanical integrity, and biocompatibility. The derived materials, aerogels obtained after freeze-drying of hydrogels, or carbogels produced after carbonization of aerogels, are also considered. The applications are expected especially in biomedicine and energy-storage devices but many other uses proposed in the literature are listed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Reprinted from (Blinova et al. 2007b)

Fig. 9

Unpublished results of Z. Sadakbayeva, IMC Prague

Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adhikari S, Banerji P (2009) Polyaniline composite by in situ polymerization on swollen PVA gel. Synth Met 159:2519–2524. doi:10.1016/j.synthmet.2009.08.050

    Article  CAS  Google Scholar 

  • Ahmad H, Rahman MM, Ali MA, Minami H, Tauer K, Gafur MA, Rahman MM (2016) A simple route to synthesize conductive stimuli-responsive polypyrrole nanocomposite hydrogel particles with strong magnetic properties and their performance for removal of hexavalent chromium ions from aqueous solution. J Magn Magn Mater 412:15–22. doi:10.1016/j.jmmm.2016.03.068

    Article  CAS  Google Scholar 

  • Antonio JLS, Lira LM, Gonçales VR, Cordoba de Torresi SI (2013) Fully conducting hydro-sponges with electro-swelling properties tuned by synthetic parameters. Electrochim Acta 216:216–224. doi:10.1016/j.electacta.2012.11.012

    Article  CAS  Google Scholar 

  • Antonio-Carmona ID, Martínez-Amador SY, Martínez-Gutiérrez H, Ovando-Medina VM, González-Ortega O (2015) Semiconducting polyurethane/polypyrrole/polyaniline for microorganism immobilization and wastewater treatment in anaerobic/aerobic sequential packed bed reactors. J Appl Polym Sci 132:42242. doi:10.1002/app.42242

    Article  CAS  Google Scholar 

  • Bajpai AK, Bajpai J, Soni SN (2008) Preparation and characterization of electrically conductive composites of poly(vinyl alcohol)-g-poly(acrylic acid) hydrogels impregnated with polyaniline (PANI). Express Polym Lett 2:26–39. doi:10.3144/expresspolymlett.2008.5

    Article  CAS  Google Scholar 

  • Bajpai AK, Baipaj J, Soni SN (2009) Designing polyaniline (PANI) and polyvinyl alcohol (PVA) based on electrically conductive nanocomposites: preparation, characterization, and blood compatible study. J Macromol Sci Part A Pure Appl Chem 46:774–782. doi:10.1080/10601320903004533

    Article  CAS  Google Scholar 

  • Baniasadi H, Ramazani ASA, Mashayekhan S (2015) Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. Int J Biol Macromol 74:360–366. doi:10.1016/j.ijbiomac.2014.12.014

    Article  CAS  Google Scholar 

  • Barthus RC, Lira LM, de Torresi SIC (2008) Conducting polymer–hydrogel blends for electrochemically controlled drug release devices. J Braz Chem Soc 19:630–636. doi:10.1590/S0103-50532008000400004

    Article  CAS  Google Scholar 

  • Bhowmick B, Mollick MMR, Mondal D, Maity D, Bain MK, Bera NK, Rana D, Chattopadhyay S, Chakraborty M, Chattopadhyay D (2013) Poloxamer and gelatin gel guided polyaniline nanofibers: synthesis and characterization. Polym Int 63:1505–1512. doi:10.1002/pi.4657

    Article  CAS  Google Scholar 

  • Blinova NV, Stejskal J, Trchová M, Prokeš J, Omastová M (2007a) Polyaniline and polypyrrole: a comparative study of the preparation. Eur Polym J 43:2331–2341. doi:10.1016/j.eurpolymj.2007.03.045

    Article  CAS  Google Scholar 

  • Blinova NV, Stejskal J, Trchová M, Ćirić-Marjanović G, Sapurina I (2007b) Polymerization of aniline on polyaniline membranes. J Phys Chem 111:2440–2448. doi:10.1021/jp067370f

    Article  CAS  Google Scholar 

  • Blinova NV, Trchová M, Stejskal J (2009) The polymerization of aniline at solution–gelatin gel interface. Eur Polym J 45:668–673. doi:10.1016/j.eurpolymj.2008.12.034

    Article  CAS  Google Scholar 

  • Brady S, Lau KT, Megill W, Wallace GG, Diamond D (2005) The development and characterization of conducting polymeric-based sensing devices. Synth Met 154:25–28. doi:10.1016/j.synthmet.2005.07.008

    Article  CAS  Google Scholar 

  • Brožová L, Holler P, Kovářová J, Stejskal J, Trchová M (2008) The stability of polyaniline in strongly alkaline or acidic aqueous media. Polym Degrad Stab 93:592–600. doi:10.1016/j.polymdegradstab.2008.01.012

    Article  CAS  Google Scholar 

  • Castro LEV, Martínez CJP, del Castillo Castro T, Ortega MMC, Encinas JC (2015) Chemical polymerization of pyrrole in the presence of l-serine of l-glutamic acid: electrically controlled amoxicillin release from composite hydrogel. J Appl Polym Sci 132:41804. doi:10.1002/app.41804

    Google Scholar 

  • Chakraborty P, Das S, Mondal S, Nandi AK (2015) Conducting hydrogel of a naphthalenetetracarboxylic dianhydride derivative and polyaniline: different electronic properties in gel and xerogel states. CrystEngComm 17:8093–8104. doi:10.1039/c5ce00837a

    Article  CAS  Google Scholar 

  • Chen CN, Fu XW, Ma T, Fan W, Wang ZB, Miao SD (2014a) Synthesis and electrochemical properties of graphene oxide/nanosulfur/polypyrrole ternary nanocomposite hydrogel for supercapacitors. J Appl Polym Sci 131:40814. doi:10.1002/app.40814

    Google Scholar 

  • Chen Z, To JWF, Wang C, Lu Z, Liu N, Chortos A, Pan L, Wei F, Cui Y, Bao Z (2014b) A three-dimensionally interconnected carbon nanotube–conducting polymer hydrogel network for high performance flexible battery electrodes. Adv Energy Mater 4:1400207. doi:10.1002/aenm.201400207

    Article  CAS  Google Scholar 

  • Chen PY, Courchesne NMD, Hyder MN, Qi J, Becher AM, Hammond PT (2015) Carbon nanotube–polyaniline core–shell nanostructured hydrogel for electrochemical energy storage. RSC Adv 5:37970–39977. doi:10.1039/c5ra02944a

    Article  CAS  Google Scholar 

  • Ćirić-Marjanović G, Pašti I, Gavrilov N, Janosević A, Mentus S (2013) Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials. Chem Pap 67:781–813. doi:10.2478/s11696-013-0312-1

    Article  CAS  Google Scholar 

  • da Silva LBJ, Oréfice RL (2014) Synthesis and electromechanical actuation of a temperature, pH, and electrically responsive hydrogel. J Polym Res 21:466. doi:10.1007/s10965-014-0466-8

    Article  CAS  Google Scholar 

  • Dai TY, Jiang XJ, Hua SH, Wang XS, Lu Y (2008) Facile fabrication of conducting polymer hydrogels via supramolecular self-assembly. Chem Commun 4279–4281. doi:10.1039/b807116k

  • Dai TY, Qing XT, Xia YY (2009) Conducting hydrogels with enhanced mechanical strength. Polymer 50:5236–5241. doi:10.1016/j.polymer.2009.09.025

    Article  CAS  Google Scholar 

  • Dai TY, Qing XT, Wang J, Shen C, Lu Y (2010a) Interfacial polymerization to high-quality polyacrylamide/polyaniline composite hydrogels. Compos Sci Technol 70:498–503. doi:10.1016/j.compscitech.2009.11.027

    Article  CAS  Google Scholar 

  • Dai TY, Qing XT, Zhou H, Shen C, Wang J, Lu Y (2010b) Mechanically strong conducting hydrogels with special double-network structure. Synth Met 160:791–796. doi:10.1016/j.synthmet.2010.01.024

    Article  CAS  Google Scholar 

  • Dai TY, Shi ZQ, Shen C, Wang J, Lu Y (2010c) Self-strengthened conducting polymer hydrogels. Synth Met 160:1101–1106. doi:10.1016/j.synthmet.2010.02.034

    Article  CAS  Google Scholar 

  • Dai TY, Tang R, Yue XX, Xu L, Lu Y (2015) Capacitance performances of supramolecular hydrogels based on conducting polymers. Chin J Polym Sci 33:1018–1027. doi:10.1007/s10118-015-1647-6

    Article  CAS  Google Scholar 

  • Dispenza C, Leone M, Presti CL, Librizzi F, Spadaro G, Vetri V (2006) Optical properties of biocompatible polyaniline nano-composites. J Non-Cryst Solids 352:3835–3840. doi:10.1016/j.jnoncrysol.2006.06.017

    Article  CAS  Google Scholar 

  • Dmitrieva E, Dunsch L (2011) How linear is “linear” polyaniline? J Phys Chem B 115:6401–6411. doi:10.1021/jp200599f

    Article  CAS  Google Scholar 

  • Dou P, Liu Z, Cao ZZ, Zheng J, Wang C, Xu XH (2016) Rapid synthesis of hierarchical nanostructured polyaniline hydrogel for high power density energy storage application and three-dimensional multilayers printing. J Mater Sci 51:4274–4282. doi:10.1007/s10853-016-9727-8

    Article  CAS  Google Scholar 

  • Elyashevich GK, Smirnov MA (2012) New pH-responsive and electroactive composite systems containing hydrogels and conductive polymers on a porous matrix. Polym Sci A 54:900–908. doi:10.1134/S0965545X12110028

    Article  CAS  Google Scholar 

  • Fedorova S, Stejskal J (2002) Surface and precipitation polymerization of aniline. Langmuir 18:5630–5632. doi:10.1021/la025665o

    Article  CAS  Google Scholar 

  • Feng JT, Zhang Q, Wang JJ, Yang HH, Xu H, Yan W (2015) Application of chemically synthesized polypyrrole with hydro-sponge characteristic as electrode in water desalination. RSC Adv 5:71593–71600. doi:10.1039/c5ra09062h

    Article  CAS  Google Scholar 

  • Frisch HL, Ma JQ, Song HH, Frisch KC, Mengnjoh PC, Molla AH (2001) Hybrid electrically conductive polyaniline/polyurethane foams. J Appl Polym Sci 80:893–897. doi:10.1002/1097-4628(20010509)80:6<893:AID-APP1167>3.0.CO;2-9

    Article  CAS  Google Scholar 

  • Ghosh S, Inganäs O (1999) Conducting polymer hydrogels as 3D electrodes: applications for supercapacitors. Adv Mater 11:1214–1218. doi:10.1002/(SICI)1521-4095(199910)11:14<1214:AID-ADMA1214>3.0.CO;2-3

    Article  CAS  Google Scholar 

  • Guiseppi-Elie A (2010) Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31:2701–2716. doi:10.1016/j.biomaterials.2009.12.052

    Article  CAS  Google Scholar 

  • Guo BL, Finne-Wisterland A, Albertsson AC (2011) Degradable and electroactive hydrogels with tunable electrical conductivity and swelling behavior. Chem Mater 23:1254–1262. doi:10.1021/cm103498s

    Article  CAS  Google Scholar 

  • Guo HT, He WN, Lu Y, Zhang XT (2015) Self-crosslinked polyaniline hydrogel electrodes for electrochemical energy storage. Carbon 92:133–141. doi:10.1016/j.carbon.2015.03.062

    Article  CAS  Google Scholar 

  • Hao GP, Hippauf F, Oschatz M, Wisser FM, Leifert A, Nickel W, Mohamad-Noriega N, Kaskel S (2014) Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors. ACS Nano 8:7138–7146. doi:10.1021/nn502065u

    Article  CAS  Google Scholar 

  • Humpolicek P, Kasparkova V, Saha P, Stejskal J (2012) Biocompatibility of polyaniline. Synth Met 162:722–727. doi:10.1016/j.synthmet.2012.02.024

    Article  CAS  Google Scholar 

  • Jayakumar A, Yoon YJ, Wang RH, Lee JM (2015) Novel graphene/polyaniline/MnOx 3D-hydrogels obtained by controlled morphology of MnOx in the graphene/polyaniline matrix for high performance binder-free supercapacitor electrodes. RSC Adv 5:94388–94396. doi:10.1039/c5ra16884h

    Article  CAS  Google Scholar 

  • Ji JY, Yu XH, Cheng P, Zhang Q, Du FP, Lui L, Shang SM (2015) Assembly of polypyrrole–graphene oxide hydrogel nanocomposites and their swelling properties. J Macromol Sci Part B Phys 54:1122–1131. doi:10.1080/00222348.2015.1065558

    Article  CAS  Google Scholar 

  • Jia YJ, Jiang JC, Sun K, Dai TY (2012) Electrocatalytic performance of Pt supported on polyaniline-poly(styrene sulfonate) hydrogel. J Appl Polym Sci 125:3702–3707. doi:10.1002/app.36712

    Article  CAS  Google Scholar 

  • Jia YJ, Li XY, Jiang JC, Sun K (2015a) Adsorption of creatinine on polyaniline-poly(styrene sulfonate) hydrogels bas activated carbon particles. Iran Polym J 24:775–781. doi:10.1007/s13726-015-0366-8

    Article  CAS  Google Scholar 

  • Jia YJ, Jiang JC, Sun K (2015b) Pyrolysis of polyaniline–poly(styrene sulfonate) hydrogels to prepare activated carbons for the adsorption of vitamin B12. J Anal Appl Pyrol 111:247–253. doi:10.1016/j.jaap.2014.10.023

    Article  CAS  Google Scholar 

  • Jiang WJ, Liu YF, Wang J, Zhang M, Luo WJ, Zhu YF (2016) Separation-free polyaniline/TiO2 3D hydrogel with high photocatalytic activity. Adv Mater Interfaces 3:1500502. doi:10.1002/admi.201500502

    Article  CAS  Google Scholar 

  • Kaith BS, Sharma R, Kalia S (2015) Guar gum based biodegradable, antibacterial and electrically conductive hydrogels. Int J Biol Macromol 75:266–275. doi:10.1016/j.ijbiomac.2015.01.046

    Article  CAS  Google Scholar 

  • Karbarz M, Gniadek M, Donten M, Stojek Z (2011) Intra-channel of environmentally sensitive poly(N-isopropylacrylamide) hydrogel with polyaniline using interphase synthesis. Electrochem Commun 13:714–718. doi:10.1016/j.elecom.2011.04.018

    Article  CAS  Google Scholar 

  • Kim BC, Spinks GM, Wallace GG, John R (2000) Electroformation of conducting polymers in hydrogel support matrix. Polymer 41:1783–1790. doi:10.1016/S0032-3861(99)00308-0

    Article  CAS  Google Scholar 

  • Kim DH, Abidian M, Martin DC (2004) Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices. J Biomed Mater Res A 71:577–585. doi:10.1002/jbm.a.30124

    Article  CAS  Google Scholar 

  • Kim HI, Park SJ, Kim SJ (2006a) Volume behaviour of interpenetrating polymer network hydrogels composed of polyacrylic acid-co-poly(vinyl sulfonic acid)/polyaniline as an actuator. Smart Mater Struct 15:1882–1886. doi:10.1088/0964-1726/15/6/044

    Article  CAS  Google Scholar 

  • Kim SJ, Kim MS, Kim SI, Spinks GM, Kim BC, Wallace GG (2006b) Self-oscillatory actuation at constant DC voltage with pH-sensitive chitosan/polyaniline hydrogel blend. Chem Mater 18:5805–5809. doi:10.1021/cm060988h

    Article  CAS  Google Scholar 

  • Kim BC, Hong JY, Wallace GG, Park HS (2015) Recent progress in flexible electrochemical capacitors: Electrode materials, device configuration, and functions. Adv Energy Mater 5:1500959. doi:10.1002/aenm.201500959

    Article  CAS  Google Scholar 

  • Kishi R, Kubota K, Miura T, Yamaguchi T, Okuzaki H, Osada Y (2014) Mechanically tough double-network hydrogels with high electronic conductivity. J Mater Chem C 2:736–743. doi:10.1039/c3tc31999g

    Article  CAS  Google Scholar 

  • Kocherginsky NM, Wang Z (2006) Transmembrane redox reactions through polyaniline membrane doped with fullerene C-60. Synth Met 156:558–565. doi:10.1016/j.synthmet.2006.02.010

    Article  CAS  Google Scholar 

  • Kocherginsky NM, Wang Z (2008) Ion/electron coupled transport through polyaniline membrane: fast transmembrane redox reactions at neutral pH. J Phys Chem B 112:7016–7021. doi:10.1021/jp8002195

    Article  CAS  Google Scholar 

  • Kopeček J (2007) Hydrogel biomaterials: a smart future? Biomaterials 28:5185–5192. doi:10.1016/j.biomaterials.2007.07.044

    Article  CAS  Google Scholar 

  • Kopeček J, Yang JY (2007) Hydrogels as smart biomaterials. Polym Int 56:1078–1098. doi:10.1002/pi.2253

    Article  CAS  Google Scholar 

  • Kopecká J, Kopecký D, Vrňata M, Fitl P, Stejskal J, Trchová M, Bober P, Morávková Z, Prokeš J, Sapurina I (2014) Polypyrrole nanotubes: mechanism of formation. RSC Adv 4:1551–1558. doi:10.1039/c3ra45841e

    Article  Google Scholar 

  • Kumar A (ed) (2016) Supramolecular cryogels: Biomedical and biotechnological applications. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Lee YY, Kang HY, Gwon SH, Choi GM, Lim SM, Sun JY, Joo YC (2016) A strain-sensitive stretchable electronic conductor: PEDOT:PSS/acrylamide organogels. Adv Mater 28:1636–1643. doi:10.1002/adma.201504606

    Article  CAS  Google Scholar 

  • Li QH, Wu JH, Tang ZY, Xiao YM, Huang ML, Lin JM (2010) Application of poly (acrylic acid-g-gelatin)/polypyrrole gel electrolyte in flexible quasi-solid-state dye-sensitized solar cell. Electrochim Acta 55:2777–2781. doi:10.1016/j.electacta.2009.12.072

    Article  CAS  Google Scholar 

  • Li Y, Zheng JL, Feng J, Jing XL (2013) Polyaniline micro-/nanostructures: morphology control and formation mechanism exploration. Chem Pap 67:876–890. doi:10.2478/s11696-013-0347-3

    CAS  Google Scholar 

  • Li LC, Ge J, Guo BL, Ma PX (2014) In situ forming biodegradable electroactive hydrogels. Polym Chem 5:2880–2890. doi:10.1039/c3py01634

    Article  CAS  Google Scholar 

  • Li LC, Ge J, Ma PX, Guo BL (2015a) Injectable conducting interpenetrating polymer network hydrogels from gelatin-graft-polyaniline and oxidized dextran with enhanced mechanical properties. RSC Adv 5:92490–92498. doi:10.1039/c5ra19467a

    Article  CAS  Google Scholar 

  • Li SB, Liu JY, Zhang XY, Li L, Yu XH, Huang ZL (2015b) Assembly of conducting polypyrrole hydrogels as a suitable adsorbent for Cr(VI) removal. Polym Bull 72:2891–2902. doi:10.1007/s00289-015-1442-0

    Article  CAS  Google Scholar 

  • Liang XT, Qu B, Li JR, Xiao HN, He BH, Qian LY (2015) Preparation of cellulose-based conductive hydrogels with ionic liquid. React Funct Polym 86:1–6. doi:10.1016/j.reactfunctpolym.2014.11.002

    Article  CAS  Google Scholar 

  • Lin JM, Tang QW, Wu JH, Li QH (2010) A multifunctional hydrogel with high conductivity, pH-responsive, and release properties from polyacrylate/polypyrrole. J Appl Polym Sci 116:1376–1383. doi:10.1002/app.31642

    Article  CAS  Google Scholar 

  • Lira ML, de Torresi S (2005) Conducting polymer–hydrogel composites for electrochemical release devices: synthesis and characterization of semi-interpenetrating polyaniline–polyacrylamide networks. Electrochem Commun 7:717–723. doi:10.1016/j.elecom.2005.04.017

    Article  CAS  Google Scholar 

  • Liu ZQ, Lu AG, Yang ZP, Luo YL (2013) Enhanced swelling and mechanical properties of P(AM-co-SMA) semi IPN composite hydrogels by impregnation with PANI and MWNTs-COOH. Macromol Res 21:376–384. doi:10.1007/s13233-013-1024-7

    Article  CAS  Google Scholar 

  • Liu Q, Wu JH, Lan Z, Zheng M, Yue GT, Lin JM, Huang ML (2015) Preparation of PAA-g-PEG/PANI polymer gel electrolyte and its application in quasi solid state dye-sensitized solar cells. Polym Eng Sci 55:322–326. doi:10.1002/pen.23900

    Article  CAS  Google Scholar 

  • Lozinsky VI (2014) A brief history of polymeric cryogels. Adv Polym Sci 263:1–48. doi:10.1007/978-3-319-05846-7_1

    Article  CAS  Google Scholar 

  • Lozinsky VI, Oguz O (2014) Basic principles of cryoscopic gelation. Adv Polym Sci 263:49–102. doi:10.1007/978-3-319-05846-7_2

    Article  CAS  Google Scholar 

  • Lu Y, He WN, Guo HT, Zhang YY, Li QW, Shao ZQ, Cui YL, Zhang XT (2014) Eleatic, conductive, polymeric hydrogels and sponges. Sci Rep 4:5792. doi:10.1038/srep05792

    Article  CAS  Google Scholar 

  • Luo RC, Wu J, Dinh ND, Chen CH (2015) Gradient porous elastic hydrogels with shape-memory property and anisotropic responses for programmable locomotion. Adv Funct Mater 25:7272–7279. doi:10.1002/adfm.201503434

    Article  CAS  Google Scholar 

  • Malti A, Edberg J, Granberg H, Khan ZU, Andreasen JW, Liu XJ, Zhao D, Zhang H, Yao YL, Brill JW, Engquist I, Fahlman M, Wågberg L, Crispin X, Berggren M (2016) An organic mixed ion–electron conductor for power electronics. Adv Sci 3:1500305. doi:10.1002/advs.201500305

    Article  CAS  Google Scholar 

  • Mano N, Yoo JE, Tarver J, Loo YL, Heller A (2007) An electron-conducting cross-linked polyaniline-based redox hydrogel, formed in one step at pH 7.2, wires glucose oxidase. J Am Chem Soc 129:7006–7007. doi:10.1021/ja071946c

    Article  CAS  Google Scholar 

  • Martínez MV, Bongiovanni S, Rivero AR, Miras MC, Rivarola CR, Barbero CA (2015) Polymeric nanocomposites made of a conducting polymer and a thermosensitive hydrogel: strong effect of the preparation procedure on the properties. Polymer 78:94–103. doi:10.1016/j.polymer.2015.09.054

    Article  CAS  Google Scholar 

  • Mawad D, Lauto A, Wallace GG (2016) Conductive polymer hydrogels. In: Polymeric hydrogels as smart biomaterials. Springer, Cham, pp 19–44. doi:10.1007/978-3-319-25322-0

  • Meng LH, Lu Y, Wang XD, Zhang J, Duan YQ, Li CX (2007) Facile synthesis of straight polyaniline nanostick in hydrogel. Macromolecules 40:2981–2983. doi:10.1021/ma062366n

    Article  CAS  Google Scholar 

  • Miao J, Xie AJ, Li SK, Huang FZ, Cao J, Shen YH (2016) A novel reducing graphene/polyaniline/cuprous oxide composite hydrogel with unexpected photocatalytic activity for the degradation of Congo red. Appl Surf Sci B 360:594–600. doi:10.1016/japsusc.2015.11.0050169

    Article  CAS  Google Scholar 

  • Mihic A, Cui Z, Wu J, Vlacic G, Miyagi Y, Li SH, Lu S, Sung HW, Weisel RD, Li RK (2015) A conductive polymer hydrogel supports cell electrical signalling and improves cardiac function after implantation into myocardial infarct. Circulation 132:772–784. doi:10.1161/circulationaha.114.014937

    Article  CAS  Google Scholar 

  • Molina MA, Rivarola CR, Miras MC, Lescano D, Barbero CA (2011) Nanocomposite synthesis by absorption of nanoparticles into macroporous hydrogels. Building a chemomechanical actuator driven by electromagnetic radiation. Nanotechnology 22:24504. doi:10.1088/0957-4484/22/24/245504

    Article  CAS  Google Scholar 

  • Moussa M, Zhao ZH, El-Kady MF, Liu HK, Michelmore A, Kawashima N, Majewski P, Ma J (2015) Free-standing composite hydrogel films for superior volumetric capacitance. J Mater Chem A 3:15668–15674. doi:10.1039/c5ta03113c

    Article  CAS  Google Scholar 

  • Muthukumar N, Thilagavathi G, Kannaian T (2016) Polyaniline-coated foam electrodes for electroencephalography (EEG) measurement. J Text Inst 107:283–290. doi:10.1080/00405000.2015.1028248

    Article  CAS  Google Scholar 

  • Niu ZQ, Zhou WY, Chen XD, Chen J, Xie SS (2015) Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv Mater 27:6002–6008. doi:10.1002/adma.201502263

    Article  CAS  Google Scholar 

  • O’Connor TF, Rajan KM, Printz AD, Lipomi DJ (2015) Towards organic electronics with properties inspired by biological tissue. J Mater Chem B 3:4947–4952. doi:10.1039/c5tb00173k

    Article  CAS  Google Scholar 

  • Oh HS, Jeng HM, Park JH, Ock IW, Kang JK (2015) Hierarchical Si hydrogel architecture with conductive polyaniline channels on sulfonated-graphene for high-performance Li ion battery anodes having a robust cycle life. J Mater Chem A 3:10238–10242. doi:10.1039/c5ta01825k

    Article  CAS  Google Scholar 

  • Omastová M, Trchová M, Kovářová J, Stejskal J (2003) Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth Met 138:447–455. doi:10.1016/S0379-6779(02)00498-8

    Article  CAS  Google Scholar 

  • Owino JHO, Arotiba OA, Baker PGL, Guiseppi-Elie A, Iwuoha EI (2008) Synthesis and characterization of poly(2-hydroxyethyl methacrylate)-polyaniline based hydrogel composites. React Funct Polym 68:1239–1244. doi:10.1016/j.reactfunctpolym.2008.05.005

    Article  CAS  Google Scholar 

  • Pan LJ, Yu GH, Zhai DY, Lee HR, Zhao WT, Liu N, Wang HL, Tee BCK, Shi Y, Bao ZN (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci USA 109:9287–9292. doi:10.1073/pnas.120263109

    Article  CAS  Google Scholar 

  • Péréz-Martínez CJ, Cávez SDM, del Castillo-Castro T, Ceniceros TEL, Castillo-Ortega MM, Rodríguez-Félix DE, Ruíz JCG (2016) Electroconductive nanocomposite hydrogel for pulsatile drug release. React Funct Polym 100:12–17. doi:10.1016/j.reactfunctpolym.2015.12.017

    Article  CAS  Google Scholar 

  • Petrov P, Mokreva P, Kostov I, Uzunova V, Tzoneva R (2016) Novel electrically conducting 2-hydroxyethylcellulose/polyaniline nanocomposite cryogels: synthesis and application in tissue. Carbohydr Polym 140:349–355. doi:10.1016/j.carbpol.2015.12.069

    Article  CAS  Google Scholar 

  • Prabhakar R, Kumar D (2016) Influence of dopant ions on the properties of conducting polyacrylamide/polyaniline hydrogels. Polym-Plast Technol Eng 55:46–53. doi:10.1080/0602559.2015.1055501

    Article  CAS  Google Scholar 

  • Qin YC, Chen XX, Tang QW, Li QH, He BL, Chen KX, Jin SY, Dai WL, Li MJ, Xie Y, Gao YH (2014) Microporous gel electrolyte for-quasi-solid-state dye-sensitized solar cells. Polym Eng Sci 54:2531–2535. doi:10.1002/pen.23808

    Article  CAS  Google Scholar 

  • Rivero RE, Molina MA, Rivarola CR, Barbero CA (2014) Pressure and microwave sensors/actuators based on smart hydrogel/conductive polymer nanocomposite. Sens Actuators B: Chem 190:270–278. doi:10.1016/j.snb.2013.08.054

    Article  CAS  Google Scholar 

  • Saha S, Sarkar P, Sarkar M, Girl P (2015) Electroconductive smart polyacrylamide–polypyrrole (PACPPY) hydrogel: a device or controlled release of risperidone. RSC Adv 5:27665–27673. doi:10.1039/c5ra03535j

    Article  CAS  Google Scholar 

  • Sapurina IYu, Stejskal J (2012) Oxidation of aniline with strong and weak oxidants. Russ J Gen Chem 82:256–275. doi:10.1134/S1070363212020168

    Article  CAS  Google Scholar 

  • Sapurina I, Stejskal J, Šeděnková I, Trchová M, Kovářová J, Hromádková J, Kopecká J, Cieslar M, El-Nasr AA, Ayad MM (2016) Catalytic activity of polypyrrole nanotubes decorated with noble-metal nanoparticles and their conversion to carbonized analogues. Synth Met 214:14–22. doi:10.1016/j.synthmet.2016.01.009

    Article  CAS  Google Scholar 

  • Sharma K, Kaith BS, Kumar V, Kalia S, Kumar V, Swart HC (2014a) Synthesis and biodegradation studies of gamma irradiated electrically conductive hydrogels. Polym Degrad Stab 107:166–177. doi:10.1016/j.polymdegradstab.2014.05.014

    Article  CAS  Google Scholar 

  • Sharma K, Kaith BS, Kumar V, Kali S, Kumar V, Swart HC (2014b) Water retention and dye adsorption behavior of Gg-cl-poly(acrylic acid-aniline) based conductive hydrogels. Geoderma 232–234:44–45. doi:10.1016/j.geoderma.2014.04.035

    Google Scholar 

  • Sharma K, Kumar V, Chaudhary B, Kaith BS, Kalia S (2016) Application of biodegradable superabsorbent hydrogel composite based on gum ghatti-co-poly(acrylic acid-aniline) for controlled drug delivery. Polym Degrad Stab 124:101–111. doi:10.1016/j.polymdegradstab.2015.12.021

    Article  CAS  Google Scholar 

  • Shi Y, Yu GH (2016) Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion. Chem Mater 28:2466–2477. doi:10.1021/acs.chemmater.5b04879

    Article  CAS  Google Scholar 

  • Shi XW, Hu YL, Tu K, Zhang L, Wang H, Xu J, Zhang HM, Li J, Wang XH, Xu M (2013) Electromechanical polyaniline–cellulose hydrogels with high compressive strength. Soft Matter 9:10129–10134. doi:10.1039/c3sm51490k

    Article  CAS  Google Scholar 

  • Shi ZJ, Li XL, Chen XL, Han HW, Yang G (2014a) Double network bacterial cellulose hydrogel to build a biology-device interface. Nanoscale 6:970–977. doi:10.1039/c3nr05214a

    Article  CAS  Google Scholar 

  • Shi ZQ, Gao HC, Feng J, Ding BB, Cao XD, Kuga SG, Wang YJ, Zhang L, Cai J (2014b) In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Angew Chem Int Ed 53:5380–5384. doi:10.1002/anie.2014402751

    Article  CAS  Google Scholar 

  • Shi Y, Peng L, Yu GH (2015a) Nanostructures conducting polymer hydrogels for energy storage applications. Nanoscale 7:12796–12806. doi:10.1039/c5nr03403e

    Article  CAS  Google Scholar 

  • Shi Y, Ma CB, Peng L, Yu GH (2015b) Conductive “smart” hybrid hydrogels with PNIPAM and nanostructured conductive polymers. Adv Funct Mater 25:1219–1225. doi:10.1002/adfm.201404247

    Article  CAS  Google Scholar 

  • Shishov MA, Moshnikov VA, Sapurina IYu (2013) Self-organization of polyaniline during oxidative polymerization: formation of granular structure. Chem Pap 67:909–918. doi:10.2478/s11696-012-0284-6

    Article  CAS  Google Scholar 

  • Siddhanta SK, Gangopadhyay R (2005) Conducting polymer gel: formation of a novel semi-IPN from polyaniline and crosslinked poly(2-acrylamido-2-methyl propanesulphonic acid). Polymer 46:2993–3000. doi:10.1016/j.polymer.2005.01.084

    Article  CAS  Google Scholar 

  • Simzar H, Masoud S, Ebrahim VF, Hossein G, Elham A, Mahdi RS (2015) Detailed mechanism of aniline nucleation into more conductive nanofibers. Synth Met 209:91–98. doi:10.1016/j.synthmet.2015.06.005

    Article  CAS  Google Scholar 

  • Słoniewska A, Pałys B (2014) Supramolecular polyaniline hydrogel as a support for urease. Electrochim Acta 126:90–97. doi:10.1016/j.electacta.2013.10.164

    Article  CAS  Google Scholar 

  • Smirnov MA, Bobrova NV, Dmitriev IYu, Bukolšek V, Elyashevich GK (2011) Electroactive hydrogels based on poly(acrylic acid) and polypyrrole. Polym Sci A 53:67–74. doi:10.1134/S0965545X11010068

    Article  CAS  Google Scholar 

  • Smirnov MA, Sokolova MP, Bobrova NV, Kasatkin IA, Lahderanta E, Elyasehvich GK (2016) Capacitance properties and structure of electroconducting hydrogels based on copoly(aniline–p-phenylenediamine) and polyacrylamide. J Power Sources 304:102–110. doi:10.1016/j.powsour.2015.11.035

    Article  CAS  Google Scholar 

  • Spearman BS, Hodge AJ, Porter JL, Hardy JG, Davis ZD, Xu T, Zhang XY, Schmidt CE, Hamilton MC, Lipke EA (2015) Conductive interpenetrating networks of polypyrrole and polycaprolactone encourage electrophysiological development of cardiac cells. Acta Biomater 28:109–120. doi:10.1016/j.actbio.215.09.025

    Article  CAS  Google Scholar 

  • Srinivasan A, Roche J, Ravaine V, Kuhn A (2015) Synthesis of conducting asymmetric hydrogel particles showing autonomous motion. Soft Matter 11:3958–3962. doi:10.1039/c5sm00273g

    Article  CAS  Google Scholar 

  • Stejskal J (2001) Colloidal dispersions of conducting polymers. J Polym Mater 18:225–258 (WOS:000171631800001)

    CAS  Google Scholar 

  • Stejskal J (2013) Conducting polymer–silver composites. Chem Pap 67:814–848. doi:10.2478/s11696-012-0304-6

    Article  CAS  Google Scholar 

  • Stejskal J (2015) Polymers of phenylenediamines. Prog Polym Sci 41:1–31. doi:10.1016/j.progpolymsci.2014.10.007

    Article  CAS  Google Scholar 

  • Stejskal J, Gilbert RG (2002) Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl Chem 74:857–867. doi:10.1351/pac200274050857

    Article  CAS  Google Scholar 

  • Stejskal J, Sapurina I (2005) Polyaniline: thin films and colloidal dispersions (IUPAC technical report). Pure Appl Chem 77:815–826. doi:10.1351/pac200577050815

    Article  CAS  Google Scholar 

  • Stejskal J, Gordon M, Torkington JA (1980) Collapse of polyacrylamide gels. Polym Bull 3:621–625. doi:10.1007/BF01135333

    Article  CAS  Google Scholar 

  • Stejskal J, Kratochvíl P, Jenkins AD (1996) The formation of polyaniline and the nature of its structures. Polymer 37:367–369. doi:10.1016/0032-3861(96)81113-X

    Article  CAS  Google Scholar 

  • Stejskal J, Riede A, Hlavatá D, Prokeš J, Helmstedt M, Holler P (1998) The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline. Synth Met 96:55–61. doi:10.1016/S0379-6779(98)00064-2

    Article  CAS  Google Scholar 

  • Stejskal J, Špírková M, Riede A, Helmstedt M, Mokreva P, Prokeš J (1999) Polyaniline dispersions 8. The control of particle morphology. Polymer 40:2487–2492. doi:10.1016/S0032-3861(98)00478-9

    Article  CAS  Google Scholar 

  • Stejskal J, Sapurina I, Trchová M, Konyushenko EN (2008a) Oxidation of aniline: polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules 41:3530–3536. doi:10.1021/ma702601q

    Article  CAS  Google Scholar 

  • Stejskal J, Prokeš J, Trchová M (2008b) Reprotonation of polyaniline: a route to various conducting polymer materials. React Funct Polym 68:1355–1361. doi:10.1016/j.reactfunctpolym.2008.06.12

    Article  CAS  Google Scholar 

  • Stejskal J, Bogomolova OE, Blinova NV, Trchová M, Šeděnková I, Prokeš J, Sapurina I (2009) Mixed electron and proton conductivity of polyaniline films in aqueous solutions of acids: beyond the 1000 S cm−1 limit. Polym Int 58:872–879. doi:10.1002/pi.2605

    Article  CAS  Google Scholar 

  • Stejskal J, Sapurina I, Trchová M (2010) Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog Polym Sci 35:1420–1481. doi:10.1016/j.progpolymsci.2010.07.006

    Article  CAS  Google Scholar 

  • Stejskal J, Exnerová M, Morávková Z, Trchová M, Hromádková J, Prokeš J (2012) Oxidative stability of polyaniline. Polym Degrad Stab 97:1026–1033. doi:10.1016/j.polymdegradstab.2012.03.006

    Article  CAS  Google Scholar 

  • Stejskal J, Trchová M, Bober P, Humpolíček P, Kašpárková V, Sapurina I, Shishov MA, Varga M (2015a) Conducting polymers: polyaniline. In: Encyclopedia of polymer science and technology, Wiley Online Library, Wiley, pp 1–44. doi:10.1002/0471440264.pst640

  • Stejskal J, Sapurina I, Trchová M, Šeděnková I, Kovářová J, Kopecká J, Prokeš J (2015b) Coaxial conducting polymer nanotubes: polypyrrole nanotubes coated with polyaniline or poly(p-phenylenediamine) and products of their carbonisation. Chem Pap 69:1341–1349. doi:10.1515/chempap-2015-0152

    Article  CAS  Google Scholar 

  • Sui MX, Lü XL, Xie AM, Xu WD, Rong XH, Wu GJ (2015) The synthesis of three dimensional (3D) polydopamine-funcionalized carbonyl iron powder@polypyrrole (CIP@PPy) aerogel composites for excellent microwave absorption. Synth Met 210:156–164. doi:10.1016/j.synthmet.2015.09.025

    Article  CAS  Google Scholar 

  • Sun XM, Tang QW, Wu JH, Xu KQ, Zhong X, Lin JM, Huang ML (2011) Two-step synthesis of superabsorbent conducting hydrogel based on poly(acrylamide-pyrrole) with interpenetrating network structure. Mater Res Innov 15:70–74. doi:10.1179/143307511X129222725664021

    Article  CAS  Google Scholar 

  • Sun R, Chen HY, Li QW, Song QJ, Zhang XT (2014a) Spontaneous assembly of strong and conductive graphene/polypyrrole hybrid aerogels for energy storage. Nanoscale 6:12912–12920. doi:10.1039/c4nr03322a

    Article  CAS  Google Scholar 

  • Sun PL, Wang Y, Yu XH, Zhang Q, Wu YG, Li L, Shang SM, Jiang SX (2014b) One step assembly of polypyrrole–graphene oxide nanocomposite sponges. Nanosci Nanotechnol Lett 6:1102–1106. doi:10.1166/nnl.2014.1885

    Article  Google Scholar 

  • Sun KH, Liu Z, Liu CJ, Yu T, Shang T, Huang C, Zhou M, Liu C, Ran F, Li Y, Shi Y, Pan LJ (2016) Evaluation of in vitro and in vivo biocompatibility of a myo-inositol hexakisphosphate gelated polyaniline hydrogel in a rat model. Sci Rep 6:23931. doi:10.1038/srep23931

    Article  CAS  Google Scholar 

  • Syrový T, Kuberský P, Sapurina I, Pretl S, Bober P, Syrový L, Hamáček A, Stejskal J (2016) Gravure-printed ammonia sensor based on organic polyaniline colloids. Sens Actuators B Chem 225:510–516. doi:10.1016/j.snb.2015.11.062

    Article  CAS  Google Scholar 

  • Tang QW, Lin JM, Wu JH, Zhang CJ, Hao SC (2007) Two-step synthesis of a poly(acrylate–aniline) conducting hydrogel with an interpenetrated networks structure. Carbohydr Polym 67:332–336. doi:10.1016/j.carbpol.2006.05.026

    Article  CAS  Google Scholar 

  • Tang QW, Wu JH, Sun H, Fan SJ, Hu D, Lin JM (2008a) Superabsorbent conducting hydrogel from poly(acrylamide-aniline) with thermo-sensitivity and release properties. Carbohydr Polym 73:473–481. doi:10.1016/j.carbpol.2007.12.030

    Article  CAS  Google Scholar 

  • Tang QW, Wu JH, Sun H, Lin JM, Fan SJ, Hu D (2008b) Polyaniline/polyacrylamide conducting composite hydrogel with a porous structure. Carbohydr Polym 74:215–219. doi:10.1016/j.carbpol.2008.02.008

    Article  CAS  Google Scholar 

  • Tang QW, Wu JH, Lin JM (2008c) A multifunctional hydrogel with high conductivity, pH-responsive, thermo-responsive and release properties from polyacrylate/polyaniline hybrid. Carbohydr Polym 73:315–321. doi:10.1016/j.carbpol.2007.11.036

    Article  CAS  Google Scholar 

  • Tang XH, Li HR, Du ZW, Wang WD, Ng HY (2015) Conductive polypyrrole hydrogels and carbon nanotubes composite as an anode for microbial fuel cells. RSC Adv 5:50968–50974. doi:10.1039/c5ra06064h

    Article  CAS  Google Scholar 

  • Tao Y, Zhao JX, Wu CX (2005) Polyacrylamide hydrogels with trapped sulfonated polyaniline. Eur Polym J 41:1342–1349. doi:10.016/j.eurpolymj.2005.01.006

    Article  CAS  Google Scholar 

  • Trchová M, Šeděnková I, Konyushenko EN, Stejskal J, Holler P, Ćirić-Marjanović G (2006) Evolution of polyaniline nanotubes: the oxidation of aniline in water. J Phys Chem B 110:9461–9468. doi:10.1026/jp05728g

    Article  CAS  Google Scholar 

  • Trchová M, Konyushenko EN, Stejskal J, Kovářová J, Ćirić-Marjanović G (2009) The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-wall carbon nanotubes. Polym Degrad Stab 94:929–938. doi:10.1016/j.polymdegradstab.2009.03.001

    Article  CAS  Google Scholar 

  • Tuo X, Li BR, Chen CL, Huang ZL, Huang HB, Li L, Yu XH (2016) Facile assembly of polypyrrole/Prussian blue aerogels for hydrogen peroxide reduction. Synth Met 213:73–77. doi:10.1016/j.synthmet.2016.01.006

    Article  CAS  Google Scholar 

  • Vani TJS, Reddy NS, Reddy PR, Rao KSVK, Ramkumar J, Reddy AVR (2014) Synthesis, characterization, and metal uptake capacity of a new polyaniline and poly(acrylic acid) grafted sodium alginate/gelatin adsorbent. Desalin Water Treat 52:526–535. doi:10.1080/19943994.2013.846460

    Article  CAS  Google Scholar 

  • Vishnoi T, Kumar A (2013) Conducting cryogel scaffold as a potential biomaterial for cell stimulation and proliferation. J Mater Sci-Mater Med 24:447–459. doi:10.1007/s10856-012-4795-z

    Article  CAS  Google Scholar 

  • Vlasov PV, Smirnov MA, Dmitriev IYu, Saprykina NN, Elyashevich GK (2014) Electrochemical activity and structure of new composite systems based on cross-linked polyacrylamide and polyaniline. Russ J Appl Chem 87:491–495. doi:10.1134/S107004272140400168

    Article  CAS  Google Scholar 

  • Wan CC, Li J (2016) Cellulose aerogels functionalized with polypyrrole and silver nanoparticles: in-situ synthesis, characterization and antibacterial activity. Carbohydr Polym 146:362–367. doi:10.1016/j.carbpol.2016.031.081

    Article  CAS  Google Scholar 

  • Wang K, Zhang X, Li C, Zhang HT, Sun ZZ, Xu NS, Ma YW (2014) Flexible solid-state supercapacitors based on a conducting polymer hydrogel with enhanced electrochemical performance. J Mater Chem A 2:19726–19732. doi:10.1039/c4ta04924a

    Article  CAS  Google Scholar 

  • Wang K, Zhang X, Li C, Sun XZ, Meng QH, Ma YW, Wei ZX (2015a) Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance. Adv Mater 27:7451–7457. doi:10.1002/adma.201503543

    Article  CAS  Google Scholar 

  • Wang YQ, Shi Y, Pan LJ, Ding Y, Zhao Y, Li Y, Shi Y, Yu GH (2015b) Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Lett 15:7736–7741. doi:10.1021/acs.nanolett.5b03891

    Article  CAS  Google Scholar 

  • Wang J, Li BY, Ni T, Dai TY, Lu Y (2015c) One-step synthesis of iodine doped polyaniline-reduced graphene oxide composite hydrogel with high capacitative properties. Compos Sci Technol 109:12–17. doi:10.1016/j.compscitech.2015.01.008

    Article  CAS  Google Scholar 

  • Wei DL, Lin X, Li L, Shang SM, Yuen MCW, Yan GP, Yu XH (2013) Controlled growth of polypyrrole hydrogels. Soft Matter 9:2832–2836. doi:10.1039/c2sm27253a

    Article  CAS  Google Scholar 

  • Wu H, Yu GH, Pan LJ, Liu NA, McDowell MT, Bao ZN, Cui Y (2013) Stable Li-ion battery anodes by in situ polymerization of conducting hydrogel to conformally coat silicon particles. Nat Commun 4:1943. doi:10.1038/ncomms2941

    Google Scholar 

  • Wu YB, Chen YX, Yan JH, Yang SH, Dong P, Soman P (2015a) Fabrication of conductive polyaniline hydrogel using porogen leaching and projection microstereolitography. J Mater Chem B 5:5352–5360. doi:10.109/c5tb00629e

    Article  Google Scholar 

  • Wu F, Xie A, Sun MX, Wang Y, Wang MY (2015b) Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic shielding. J Mater Chem A 3:14358–14369. doi:10.1039/c5ta01577d

    Article  CAS  Google Scholar 

  • Wu YB, Chen YX, Yan JH, Quinn D, Dong P, Sawyer SW, Soman P (2016) Fabrication of conductive gelatin methacrylate–polyaniline hydrogels. Acta Biomater 33:122–130. doi:10.1016/j.actbio.2016.01.036

    Article  CAS  Google Scholar 

  • Xia YY, Zhu HL (2011) Polyaniline nanofiber-reinforced conducting hydrogel with unique pH-sensitivity. Soft Matter 7:9388–9393. doi:10.1039/c1sm05890h

    Article  CAS  Google Scholar 

  • Xiao YH, He L, Che JF (2012) An effective approach for the fabrication of reinforced composite hydrogel engineered with SWNTs, polypyrrole and PEGDA hydrogel. J Mater Chem 22:8076–8082. doi:10.1039/c2jm30601h

    Article  CAS  Google Scholar 

  • Xie A, Wu F, Xu ZH, Wang MY (2015a) In situ preparation of ultralight three-dimensional polypyrrole/nano SiO2 composite aerogels with enhanced electromagnetic absorption. Compos Sci Technol 117:32–38. doi:10.1016/j.compscitech.2015.05.010

    Article  CAS  Google Scholar 

  • Xie A, Wu F, Sun MX, Dai XQ, Xu ZH, Qiu YY, Wang Y, Wang MY (2015b) Self-assembled ultralight three-dimensional polypyrrole aerogel for effective electromagnetic absorption. Appl Phys Lett 106:222902. doi:10.1063/1.4921180

    Article  CAS  Google Scholar 

  • Xu GY, Ding B, Pan J, Han JP, Nie P, Zhu Y, Sheng Q, Dou H (2015a) Porous nitrogen and phosphorus co-doped carbon networks for high-performance electrical double layer capacitors. J Mater Chem A 3:23268–23273. doi:10.1039/c5ta06113j

    Article  CAS  Google Scholar 

  • Xu Y, Tao Y, Zheng XY, Ma HY, Luo JY, Kang FY, Yang QH (2015b) A metal-free supercapacitor electrode material with a record high volumetric capacitance over 800 F cm−3. Adv Mater 27:8082–8087. doi:10.1002/adma.201504151

    Article  CAS  Google Scholar 

  • Yan B, Chen ZH, Lu C, Chen ZM, Fu JW, Xu Q (2015) Fabrication of polyaniline hydrogel: synthesis, characterization and adsorption of methylene blue. Appl Surf Sci 356:39–47. doi:10.1016/j.apsusc.2015.08.024

    Article  CAS  Google Scholar 

  • Ye SB, Feng JC (2014) Self-assembled three-dimensional hierarchical graphene/polypyrrole nanotube hybrid aerogel and its application for supercapacitors. ACS Appl Mater Interfaces 6:9671–9679. doi:10.1021/am502077p

    Article  CAS  Google Scholar 

  • Ying S, Zheng WQ, Li BR, She X, Huang HB, Li L, Huang ZL, Huang Y, Liu ZT, Yu XH (2016) Facile fabrication of elastic conducting polypyrrole nanotube aerogels. Synth Met 218:50–55. doi:10.1016/j.synthmet.2016.05.002

    Article  CAS  Google Scholar 

  • You JO, Rafat M, Ye GJC, Auguste DT (2011) Nanoengineering the heart: conductive scaffolds enhance Connexin 43 expression. Nano Lett 11:3643–3648. doi:10.1021/nl201514a

    Article  CAS  Google Scholar 

  • Yuan SS, Tang QW, He BL, Yu LM (2015) Conducting gel electrolytes with microporous structures for efficient quasi-solid-state dye-sensitized solar cells. J Power Sources 273:1148–1155. doi:10.1016/j.powsour.2014.10.019

    Article  CAS  Google Scholar 

  • Zeng S, Chen HY, Cai F, Kang YR, Chen MH, Li QW (2015) Electrochemical fabrication of carbon nanotube/polyaniline hydrogel film for all-solid-state flexible capacitor with high areal capacitance. J Mater Chem A 3:23864–23870. doi:10.1039/c5ta05937b

    Article  CAS  Google Scholar 

  • Zhai DY, Liu BR, Shi Y, Pan LJ, Wang YQ, Li WB, Zhang R, Yu GH (2013) Highly sensitive glucose sensor based on Pt nanoparticles/polyaniline hydrogel heterostructures. ACS Nano 7:3540–3546. doi:10.1021/nn400482d

    Article  CAS  Google Scholar 

  • Zhang XT, Chechik V, Smith DK, Walton PH, Dukme-Klair AK, Luo YJ (2009) Nanocomposite hydrogels—controlled synthesis of chiral polyaniline nanofibers and their inclusion in agarose. Synth Met 159:2135–2140. doi:10.1016/j.synthmet.2009.08.002

    Article  CAS  Google Scholar 

  • Zhang DY, Di F, Zhu YY, Xiao YH, Che JF (2015a) Electroactive hybrid hydrogel: toward a smart coating for neural electrodes. J Bioact Compat Polym 30:600–616. doi:10.1177/0883911515591647

    Article  CAS  Google Scholar 

  • Zhang ZY, Liang MY, Liu XH, Zhao F, Wang BF, Li WJ, Wang QG (2015b) A hybrid gel of hypergravity prepared NiO and polyaniline as Li-ion battery anodes. RSC Adv 5:88419–88424. doi:10.1039/c5ra17929g

    Article  CAS  Google Scholar 

  • Zhang JT, Zhao ZH, Xia ZH, Dai LM (2015c) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 10:444–452. doi:10.1038/nnano.2015.48

    Article  CAS  Google Scholar 

  • Zhao X, Li P, Guo BL, Ma PX (2015) Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. Acta Biomater 26:236–248. doi:10.1016/j.actbio.2015.08.006

    Article  CAS  Google Scholar 

  • Zhao HB, Yuan L, Fu ZB, Wang CY, Yang X, Zhu JY, Qu J, Chen HB, Schiraldi DA (2016) Biomass-based mechanically strong and electrically conductive polymer aerogels and their application for supercapacitors. ACS Appl Mater Interfaces 8:9917–9924. doi:10.1021/acsami.6b00510

    Article  CAS  Google Scholar 

  • Zheng J, Yu X, Wang C, Cao Z, Yang H, Ma D, Xu X (2016) Facile synthesis of three-dimensional reinforced Sn@polyaniline/sodium alginate nanofiber hydrogel network for high performance lithium-ion battery. J Mater Sci: Mater Electron 27:4457–4464. doi:10.1007/s10854-016-4317-8

    CAS  Google Scholar 

  • Zhou SK, Wang M, Chen X, Xu F (2015) Facile template synthesis of microfibrillated cellulose/polypyrrole/silver nanoparticles hybrid aerogels with electrical conductive and pressure responsive properties. ACS Sustain Chem Eng 3:3346–3354. doi:10.1021/acssuschemeng.5b01020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the Czech Grant Agency (16-02787S) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Stejskal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stejskal, J. Conducting polymer hydrogels. Chem. Pap. 71, 269–291 (2017). https://doi.org/10.1007/s11696-016-0072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0072-9

Keywords

Navigation