Chemical Papers

, Volume 71, Issue 1, pp 137–148 | Cite as

A comparative study of catalytic performance of rare earth metal-modified beta zeolites for synthesis of cymene

  • Ruchika Thakur
  • Raj K. GuptaEmail author
  • Sanghamitra Barman
Original Paper


A series of zeolite (LaB, CeB, and PrB) containing rare earth metals lanthanum (La), cerium (Ce), and praseodymium (Pr) were used for transalkylation reaction. The modified beta zeolites were characterized by EDS, XRD, BET, FTIR, and TPD. The surface area and acidities of the zeolite samples modified with various rare earth metals are considerably different. The effect of various process parameters like metal loading (2–10 wt%), catalyst loading (1.44–8.63 w/w%), temperature (448–573 K), reactant ratio 1–15, and space time (3.2–9.29 kg h/kmol) on the conversion of reactant and selectivity of product was studied. Catalytic performance of praseodymium-modified beta zeolite shows highest cumene conversion (86.4 wt%) and cymene selectivity (65.7 wt%) compared to other zeolites. The maximum cumene conversion and cymene selectivity were obtained at 523 K, toluene-to-cumene ratio of 9:1, and a space time of 9.29 kg h/kmol. Kinetic modeling of the reaction was done to estimate the reaction kinetic constants and adsorption constants. The activation energy of the transalkylation was found to be 61.44 kJ/mol.


Beta zeolite Rare earth metals Transalkylation Cymene Cumene Toluene 





Cerium-modified beta zeolite




Beta zeolite

k1, k2, k3

Kinetic constant, kgmol/kg h


Adsorption constant for cumene, atm−1


Adsorption constant for tolene, atm−1




Lanthanum-modified beta zeolite


Total pressure, atm


Partial pressure of aliphatics, atm


Partial pressure of benzene, atm


Partial pressure of cumene, atm


Partial pressure of cymene, atm


Partial pressure of DIPT, atm




Praseodymium modified beta zeolite


Partial pressure of xylene, atm


Partial pressure of toluene, atm

\(- r_{\text{cum}}\)

Experimental rate of cumene conversion


Moles of aliphatics produced, kgmol


Moles of benzene produced, kgmol


Moles of cumene reacted, kgmol


Moles of cymene produced, kgmol


Moles of DIPT produced, kgmol


Experimental fractional conversion


Moles of xylene produced, kgmol


Predicted fractional conversion


Moles of toluene reacted, kgmol


Space–time, kg h/kgmol


  1. Abichandani JS, Mohr GD, Tinger RG (2015) Transalkylation of heavy aromatic hydrocarbon feedstocks. US Patent 20150353447Google Scholar
  2. Abudawoud R (2015) Combined heavy reformate dealkylation-transalkylation process for maximizing xylenes production. US Patent 20150175504Google Scholar
  3. Alaba PA, Sani YM, Mohammed IY, Daud WMAW (2016) Insight into catalyst deactivation mechanism and suppression techniques in thermocatalytic deoxygenation of bio-oil over zeolites. Rev Chem Eng 32(1):71–91. doi: 10.1515/revce-2015-0025 CrossRefGoogle Scholar
  4. Arvela MP, Kumar N, Diaz SF, Aho A, Tenho M, Salonen J, Leino AR, Kordas K, Laukkanen P, Dahl J, Sinev L, Salmi T, Murzin DY (2013) Isomerization of β-pinene oxide over Sn-modified zeolites. J Mol Catal A Chem 366:228–237. doi: 10.1016/j.molcata.2012.09.028 CrossRefGoogle Scholar
  5. Bandyopadhyay R, Singh PS, Shaikh RA (1996) Transalkylation of cumene with toluene over zeolite beta. Appl Catal A 135(2):249–259. doi: 10.1016/0926-860X(95)00224-3 CrossRefGoogle Scholar
  6. Bandyopadhyay R, Sugi Y, Kubota Y, Rao BS (1998) Transalkylation reaction –an alternative route to produce industrially important intermediates such as cymene. Catal Today 44(1):245–252. doi: 10.1016/S0920-5861(98)00196-5 CrossRefGoogle Scholar
  7. Brown HC, Nelson KL (1953) An interpretation of meta orientation in the alkylation of toluene. The relative reactivity and isomer distribution in the chloromethylation and mercuration of benzene and toluene. J Am Chem Soc 75(24):6292–6299. doi: 10.1021/ja01120a053 CrossRefGoogle Scholar
  8. Cejka J, Wichterlova B (2002) Acid-catalyzed synthesis of mono- and dialkyl benzenes over zeolites: active sites, zeolite topology, and reaction mechanisms. Catal Rev Sci Eng 44(3):375–421. doi: 10.1081/CR-120005741 CrossRefGoogle Scholar
  9. Cejka J, Kapustin GA, Wichterlova B (1994) Factors controlling iso-/n- and para-selectivity in the alkylation of toluene with isopropanol on molecular sieves. Appl Catal A 108:187–204. doi: 10.1016/0926-860X(94)85070-4 CrossRefGoogle Scholar
  10. Chao KJ, Leu LJ (1989) Conversion of toluene and trimetrylbenzene over NAHY zeolites. Zeolites 9(3):193–196. doi: 10.1016/0144-2449(89)90025-0 CrossRefGoogle Scholar
  11. Cricsery SM (1971) The cause of shape selectivity of transalkylation in mordenite. J Catal 23(1):124–130. doi: 10.1016/0021-9517(71)90032-7 CrossRefGoogle Scholar
  12. Cullilane NM, Leyshan DM (1954) Titanium tetrachloride as a catalyst in the Friedel–Crafts reaction. Part III. Alkylation. J Chem Soc. doi: 10.1039/JR9540002942 Google Scholar
  13. Das J, Bhat YS, Bhardwaj AI, Halgeri AB (1994) Zeolite beta catalyzed C7 and C9 aromatics transformation. Appl Catal A 116:71–79. doi: 10.1016/0926-860X(94)80280-7 CrossRefGoogle Scholar
  14. Dumitriu E, Hulea V, Kaliaguine S, Huang MM (1996) Transalkylation of toluene with trimethylbenzenes. Appl Catal A Gen 135:57–81. doi: 10.1016/0926-860X(95)00236-7 CrossRefGoogle Scholar
  15. Dumitriu E, Guimon C, Hulea V, Lutic D, Fechete I (2002) Transalkylation of toluene with trimethylbenzenes catalyzed by various AFI catalysts. Appl Catal A 237:211–221. doi: 10.1016/S0926-860X(02)00329-0 CrossRefGoogle Scholar
  16. Flockhart BD, Liew KY, Pink RC (1981) Alkylation of toluene with propene using zeolite catalysts. J Catal 72(2):314–321. doi: 10.1016/0021-9517(81)90014-2 CrossRefGoogle Scholar
  17. Forni L, Cremona G, Missineo F, Bellussi G, Perego C, Pazzuconi G (1995) Transalkylation of m-diethylbenzene over large-pore zeolites. Appl Catal A 121(2):261–272. doi: 10.1016/0926-860X(94)00209-6 CrossRefGoogle Scholar
  18. Fraenkel D, Levy M (1989) Comparative study of shape-selective toluene alkylations over HZSM-5. J Catal 118(1):10–21. doi: 10.1016/0021-9517(89)90296-0 CrossRefGoogle Scholar
  19. Ghiaci M, Abbaspur A, Arshadi M, Aghabarari B (2007) Internal versus external surface active sites in ZSM-5 zeolite Part 2. Toluene alkylation with methanol and 2-propanol catalyzed by modified and unmodified H3PO4/ZSM-5. Appl Catal A 316:32–46. doi: 10.1016/j.apcata.2006.09.014 CrossRefGoogle Scholar
  20. Kauffman S (1968) Production of cumene. US Patent No. 3385906Google Scholar
  21. Khattaf SA, Ali SA, Aitani AM, Zilkova N, Kubicka H, Cejka J (2014) Recent advances in reactions of alkylbenzenes over novel zeolites: the effects of zeolite structure and morphology. Catal Rev Sci Eng 56(4):333–402. doi: 10.1080/01614940.2014.946846 CrossRefGoogle Scholar
  22. Kondamudi K, Upadhyayula S (2008) Transalkylation of diisopropylbenzene with benzene over SAPO-5 catalyst: a kinetic study. J Chem Tech and Biotech 83:699–706. doi: 10.1002/jctb.1859 CrossRefGoogle Scholar
  23. Krishnan AV, Ojha K, Pradhan NC (2002) Alkylation of phenol with tertiary butyl alcohol over zeolites. Org Process Res Dev 6(2):132–137. doi: 10.1021/op010077n CrossRefGoogle Scholar
  24. Maity SK, Seetaram CH, Pradan NC (2006) Kinetics of transalkylation of diisopropylbenzene with benzene. Presented at CHEMCON, Ankleswar, Gujrat, IndiaGoogle Scholar
  25. Marakatti VS, Halgeri AB (2015) Metal ion-exchanged zeolites as highly active solid acid catalysts for the green synthesis of glycerol carbonate from glycerol. R Soc Chem Adv 5:14286–14293. doi: 10.1039/C4RA16052E Google Scholar
  26. Mavrodinova V, Popava M, Pal-Borbely G, Mihalyi RM, Minchev CH (2003a) a) Transalkylation of toluene with cumene over zeolites Y dealuminated in solidstate. Part I. Effect of the alteration of Broensted acidity. Appl Catal A 248(1–2):181–196. doi: 10.1016/S0926-860X(03)00161-3 CrossRefGoogle Scholar
  27. Mavrodinova V, Popava M, Mihalyi RM, Pal-Borbely G, Minchev CH (2003b) Transalkylation of toluene with cumene over zeolites Y dealuminated in solidstate. Part II. Effect of the introduced Lewis acid sites. Appl Catal A 248(1–2):197–209. doi: 10.1016/S0926-860X(03)00153-4 CrossRefGoogle Scholar
  28. Nikita MB, Marina GA, Alexey VR, Eugenia VB, Natalia SL, Alexey AG, Ilya NI, Sergey IT, Lev NS (2014) Transalkylation of higher trifluoromethylated fullerenes with C70: a pathway to new addition patterns of C70(CF3)8. Chem Eur J 20:1126–1133. doi: 10.1002/chem.201302480 CrossRefGoogle Scholar
  29. Obadia MM, Bhanu PM, Anatoli S, Damien M, Eric D (2015) Reprocessing and recycling of highly cross-linked ion-conducting networks through transalkylation exchanges of C–N bonds. J Am Chem Soc 137(18):6078–6083. doi: 10.1021/jacs.5b02653 CrossRefGoogle Scholar
  30. Odedairo T, Al-Khattaf S (2011) Alkylation and transalkylation of alkylbenzenes in cymene production over zeolite catalysts. Chem Eng J 167:240–254. doi: 10.1016/j.cej.2010.12.043 CrossRefGoogle Scholar
  31. Peter A, Mihaly-Cozmuta L, Mihaly-Cozmuta A, Nicula C, Indrea E, Tutu H (2012) Calcium- and ammonium ion-modification of zeolite amendments affects the metal-uptake of Hieracium piloselloides in a dose-dependent way. J Environ Monit 14:2807–2814. doi: 10.1021/ic901814f CrossRefGoogle Scholar
  32. Pieter JS, Julia SW, Bert FS, Edward IS, Robert AS (2010) Transition-Metal Ions in Zeolites: coordination and activation of oxygen. Inorg Chem 49(8):3573–3583. doi: 10.1021/ic901814f CrossRefGoogle Scholar
  33. Rahimi N, Karimzadeh R (2011) Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review. Appl Catal A 398(1–2):1–17. doi: 10.1016/j.apcata.2011.03.009 CrossRefGoogle Scholar
  34. Rashid NA, Boldingh EP, Shih R, Schreier MR, Lafyatis DS (2014) Low pressure transalkylation process. US Patent WO2014055212Google Scholar
  35. Reddy KSN, Rao BS, Shiralkar VP (1995) Selective formation of cymenes over large pore zeolites. Appl Catal A 121(2):191–201. doi: 10.1016/0926-860X(94)00207-X CrossRefGoogle Scholar
  36. Rumyantseva YB, Kurganova EA, Koshel GN, Ivanova AA, Khrenova VV (2011) Cymenes synthesis with toluene alkylation by isopropyl alcohol. Izv Vyss Uchebnykh Zaveden Seriya Khimiya i Khimicheskaya Tekhnologiya 54(9):27–29Google Scholar
  37. Serra MJ, Guillon E, Corma A (2005) Optimizing the conversion of heavy reformate streams into xylenes with zeolite catalysts by using knowledge base high-throughput experimentation techniques. J Catal 232(2):342–354. doi: 10.1016/j.jcat.2005.03.021 CrossRefGoogle Scholar
  38. Sridevi U, Rao BKB, Pradhan NC, Tambe SS, Satyanarayana CV, Rao BS (2001) Kinetics of isopropylation of benzene over H-beta catalyst. Ind Eng Chem Res 40:3133–3138. doi: 10.1021/ie000929s CrossRefGoogle Scholar
  39. Srilatha K, Prabhavathi Devi BLA, Lingaiah N, Prasad RBN, Sai Prasad PS (2012) Biodiesel production from used cooking oil by two-step heterogeneous catalyzed process. Bioresour Technol 119:306–311. doi: 10.1016/j.biortech.2012.04.098 CrossRefGoogle Scholar
  40. Wang H, Zou Y (2003) Modified beta zeolite as catalyst for fries rearrangement reaction. Catal Lett 86:163–167. doi: 10.1023/2FA/3A1022642231296 CrossRefGoogle Scholar
  41. Wang I, Tsai TC, Huang ST (1990) Disproportionation of toluene and of trimethylbenzene and their transalkylation over zeolite beta. Ind Eng Chem Res 29:2005–2012. doi: 10.1021/ie00106a005 CrossRefGoogle Scholar
  42. Wang K, Cheng JC, Helton TE (2010) Transalkylation of polycyclohexylbenzenes. US Patent WO 2010138248 A2Google Scholar
  43. Xiaomin N, Xishi W, Shaogang Z, Mei Z (2014) Experimental study on the performance of transition metal ions modified zeolite particles in suppressing methane/air coflowing flame on cup burner. J Fire Sci 32(5):417–5430. doi: 10.1177/0734904114529402 CrossRefGoogle Scholar
  44. Zhang Q, Ming W, Ma J, Zhang J, Wang P, Li R (2014) De novo assembly of a mesoporous beta zeolite with intracrystalline channels and its catalytic performance for biodiesel production. J Mater Chem A 2:8712–8718. doi: 10.1039/C4TA00030G CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Ruchika Thakur
    • 1
  • Raj K. Gupta
    • 2
    Email author
  • Sanghamitra Barman
    • 2
  1. 1.School of Chemistry and BiochemistryThapar UniversityPatialaIndia
  2. 2.Department of Chemical EngineeringThapar UniversityPatialaIndia

Personalised recommendations