Chemical Papers

, Volume 71, Issue 1, pp 127–135 | Cite as

Application of chemometric methods to the purity analysis of PAMAM dendrimers

  • Ali S. ErtürkEmail author
  • Abdürrezzak E. Bozdoğan
  • Metin Tülü
Original Paper


Developing analytical or instrumental methods for the purity assessment of poly(amidoamine) dendrimers (PAMAMs) is almost equally important as much as integrating novel synthesis and purification methods to obtain ideal and monodisperse dendrimers. The aim of this study was to investigate the use of chemometric methods; principal component regression (PCR), and partial least squares (PLS2) to assess the purity of PAMAMs. A full factorial experimental design was used to construct PCR and PLS2 calibration models. Absorbance spectra of PAMAMs were collected by UV–Vis spectroscopy between the wavelength ranges of 250–350 nm with 1.00 nm intervals at 101 points. PCR and PLS2 multivariate models were constructed from these full spectra. The built models were compared in terms of prediction powers by means of relative mean square error of prediction values. Validation results of these models provided compelling evidence that PCR and PLS2 models, indeed PLS2 better, could be successively used to predict PAMAM mixtures quantitatively and qualitatively in terms of components. The developed models could be used to assess the purity of PAMAMs successfully for routine laboratory analysis in future studies.


PAMAM dendrimers Chemometric methods UV–Vis spectroscopy Simultaneous separation of binary mixtures Purity assessment 



This research has been supported by Yıldız Technical University Scientific Research Projects Coordination Department, Project Numbers (2011-01-02-KAP04, 2011-01-02-KAP05, 2011-01-02-KAP06, and 2012-01-02-DOP05).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest or competing financial interest related to the work described


  1. Almeida JPM, Chen AL, Foster A, Drezek R (2011) In vivo biodistribution of nanoparticles. Nanomedicine (London, UK) 6:815–835. doi: 10.2217/nnm.11.79 CrossRefGoogle Scholar
  2. Baytekin B, Werner N, Luppertz F, Engeser M, Brueggemann J, Bitter S, Henkel R, Felder T, Schalley CA (2006) How useful is mass spectrometry for the characterization of dendrimers? “Fake defects” in the ESI and MALDI mass spectra of dendritic compounds. Int J Mass Spectrom 249(250):138–148. doi: 10.1016/j.ijms.2006.01.016 CrossRefGoogle Scholar
  3. Brereton RG (2003) Chemometrics: data analysis for the laboratory and chemical plant. Wiley, OxfordCrossRefGoogle Scholar
  4. Brown SD, Ferré RT (2009) Comprehensive chemometrics: linear regression modeling, non-linear regression, classification, feature selection, multivariate robust techniques. Elsevier, OxfordGoogle Scholar
  5. Caminade A-M, Laurent R, Majoral J-P (2005) Characterization of dendrimers. Adv Drug Deliv Rev 57:2130–2146. doi: 10.1016/j.addr.2005.09.011 CrossRefGoogle Scholar
  6. Erturk AS, Gurbuz MU, Tulu M, Bozdogan AE (2015) Water-soluble TRIS-terminated PAMAM dendrimers: microwave-assisted synthesis, characterization and Cu(ii) intradendrimer complexes. RSC Adv 5:60581–60595. doi: 10.1039/C5RA11157A CrossRefGoogle Scholar
  7. Ertürk AS, Tülü M, Bozdoğan AE, Parali T (2014) Microwave assisted synthesis of Jeffamine cored PAMAM dendrimers. Eur Polym J 52:218–226. doi: 10.1016/j.eurpolymj.2013.12.018 CrossRefGoogle Scholar
  8. Giordanengo R, Mazarin M, Wu J, Peng L, Charles L (2007) Propagation of structural deviations of poly(amidoamine) fan-shape dendrimers (generations 0–3) characterized by MALDI and electrospray mass spectrometry. Int J Mass Spectrom 266:62–75. doi: 10.1016/j.ijms.2007.07.002 CrossRefGoogle Scholar
  9. Islam MT, Shi X, Balogh L, Baker JR Jr (2005) HPLC separation of different generations of poly(amidoamine) dendrimers modified with various terminal groups. Anal Chem 77:2063–2070. doi: 10.1021/ac048383x CrossRefGoogle Scholar
  10. Joliffe I, Morgan B (1992) Principal component analysis and exploratory factor analysis. Stat Methods Med Res 1:69–95. doi: 10.1177/096228029200100105 CrossRefGoogle Scholar
  11. Kallos GJ, Tomalia DA, Hedstrand DM, Lewis S, Zhou J (1991) Molecular weight determination of a polyamidoamine Starburst polymer by electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 5:383–386. doi: 10.1002/rcm.1290050902 CrossRefGoogle Scholar
  12. Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39:268–307. doi: 10.1016/j.progpolymsci.2013.07.005 CrossRefGoogle Scholar
  13. Kumar N, Bansal A, Sarma GS, Rawal RK (2014) Chemometrics tools used in analytical chemistry: an overview. Talanta 123:186–199. doi: 10.1016/j.talanta.2014.02.003 CrossRefGoogle Scholar
  14. Li J, Piehler LT, Qin D, Baker JR, Tomalia DA, Meier DJ (2000) Visualization and characterization of poly(amidoamine) dendrimers by atomic force microscopy. Langmuir 16:5613–5616. doi: 10.1021/la000035c CrossRefGoogle Scholar
  15. Martens H (1991) Multivariate calibration. Wiley, OxfordGoogle Scholar
  16. Martens H, Martens M (2000) Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Qual Pref 11:5–16. doi: 10.1016/s0950-3293(99)00039-7 CrossRefGoogle Scholar
  17. Martens H, Naes T (1989) Multivariate calibration. Wiley, OxfordGoogle Scholar
  18. Mekuria SL, Debele TA, Tsai H-C (2016) PAMAM dendrimer based targeted nano-carrier for bio-imaging and therapeutic agents. RSC Adv. doi: 10.1039/C6RA12895E Google Scholar
  19. Montgomery DC (2005) Design and analysis of experiments, student solutions manual. Wiley, OxfordGoogle Scholar
  20. Mullen DG, Desai A, van Dongen MA, Barash M, Baker JR Jr, Banaszak Holl MM (2012) Best practices for purification and characterization of PAMAM dendrimer. Macromolecules 45:5316–5320. doi: 10.1021/ma300485p CrossRefGoogle Scholar
  21. Pande S, Crooks RM (2011) Analysis of poly(amidoamine) dendrimer structure by UV–vis spectroscopy. Langmuir 27:9609–9613. doi: 10.1021/la201882t CrossRefGoogle Scholar
  22. Parisi OI, Scrivano L, Sinicropi MS, Picci N, Puoci F (2016) Engineered polymer-based nanomaterials for diagnostic, therapeutic and theranostic applications. Mini Rev Med Chem 16:754–761. doi: 10.2174/1389557515666150709112122 CrossRefGoogle Scholar
  23. Peterson J, Allikmaa V, Subbi J, Pehk T, Lopp M (2002) Structural deviations in poly(amidoamine) dendrimers: a MALDI-TOF MS analysis. Eur Polym J 39:33–42. doi: 10.1016/S0014-3057(02)00188-X CrossRefGoogle Scholar
  24. Peterson J, Allikmaa V, Subbi J, Pehk T, Lopp M (2003) Structural deviations in poly(amidoamine) dendrimers: a MALDI-TOF MS analysis. Eur Polym J 39:33–42. doi: 10.1016/s0014-3057(02)00188-x CrossRefGoogle Scholar
  25. Pourianazar NT, Mutlu P, Gunduz U (2014) Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine. J Nanopart Res. doi: 10.1007/s11051-014-2342-1 Google Scholar
  26. Rivas B, Geckeler K (1992) Synthesis and metal complexation of poly(ethyleneimine) and derivatives. Polymer synthesis oxidation processes. Advances in polymer science, vol 102. Springer, Berlin, pp 171–188. doi: 10.1007/3-540-55090-9_6 CrossRefGoogle Scholar
  27. Rivas BL, Pereira ED, Palencia M, Sánchez J (2011) Water-soluble functional polymers in conjunction with membranes to remove pollutant ions from aqueous solutions. Prog Polym Sci 36:294–322. doi: 10.1016/j.progpolymsci.2010.11.001 CrossRefGoogle Scholar
  28. Şahin S, Işık E, Demir C (2012) Prediction of total phenolic content in extracts of Prunella species from HPLC profiles by multivariate calibration. ISRN chromatography 2012Google Scholar
  29. Scott RWJ, Wilson OM, Crooks RM (2004) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109:692–704. doi: 10.1021/jp0469665 CrossRefGoogle Scholar
  30. Shi X, Banyai I, Islam MT, Lesniak W, Davis DZ, Baker JR, Balogh LP (2005) Generational, skeletal and substitutional diversities in generation one poly(amidoamine) dendrimers. Polymer 46:3022–3034. doi: 10.1016/j.polymer.2005.01.081 CrossRefGoogle Scholar
  31. Spivakov BY, Geckeler K, Bayer E (1985) Liquid-phase polymer-based retention—the separation of metals by ultrafiltration on polychelatogens. Nature (London) 315:313–315. doi: 10.1038/315313a0 CrossRefGoogle Scholar
  32. Tolić LP, Anderson GA, Smith RD, Brothers HM, Spindler R, Tomalia DA (1997) Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric characterization of high molecular mass Starburst™ dendrimers. Int J Mass Spectrom Ion Processes 165:405–418. doi: 10.1016/S0168-1176(97)00161-4 Google Scholar
  33. Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed 29:138–175. doi: 10.1002/anie.199001381 CrossRefGoogle Scholar
  34. van Dongen MA, Desai A, Orr BG, Baker JR Jr, Banaszak Holl MM (2013) Quantitative analysis of generation and branch defects in G5 poly(amidoamine) dendrimer. Polymer 54:4126–4133. doi: 10.1016/j.polymer.2013.05.062 CrossRefGoogle Scholar
  35. Wang H, Huang Q, Chang H, Xiao J, Cheng Y (2016) Stimuli-responsive dendrimers in drug delivery. Biomater Sci 4:375–390. doi: 10.1039/c5bm00532a CrossRefGoogle Scholar
  36. Wise BM, Gallagher NB, Bro R, Shaver JM, Koch RS (2006) Chemometrics tutorial for PLS toolbox and solo. Eigenvector Research Inc, Wenatchee, p 414Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Ali S. Ertürk
    • 1
    Email author
  • Abdürrezzak E. Bozdoğan
    • 2
  • Metin Tülü
    • 2
  1. 1.Department of Basic Pharmaceutical Sciences, Faculty of PharmacyAdıyaman UniversityAdıyamanTurkey
  2. 2.Department of ChemistryYıldız Tehcnical UniversityIstanbulTurkey

Personalised recommendations