Advertisement

Chemical Papers

, Volume 71, Issue 1, pp 71–79 | Cite as

Response surface optimization of cholesterol extraction from lanolin alcohol by selective solvent crystallization

  • Hui Ding
  • Dan Zhao
  • Yujie GaoEmail author
Original Paper
  • 154 Downloads

Abstract

A process to extract cholesterol from lanolin alcohol by selective solvent crystallization and recrystallization was developed. The crude lanosterol crystallization process was performed in methanol-acetone (3:1, v/v) as solvent at 18 mL g−1 liquid–solid ratio and 20.0 °C for 6 h. To be optimized by response surface methodology (RSM) coupled with central composite design, the process of cholesterol crystallization was carried out in acetic acid as solvent at 4.18 mL g−1 liquid–solid ratio and 26.1 °C for 6 h. Under the optimized conditions, cholesterol purity was substantially improved increasing from 17.5 to 76.2%, while the purity and recovery efficiency of cholesterol increased to 94.7 and 88.0% after recrystallization, respectively.

Keywords

Selective solvent crystallization Response surface methodology Cholesterol Crude lanosterol Extraction 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21376166).

References

  1. Aghazadeh Y, Rone MB, Blonder J, Ye X, Veenstra TD, Hales DB, Culty M, Papadopoulos V (2012) Hormone-induced 14-3-3 gamma adaptor protein regulates steroidogenic acute regulatory protein activity and steroid biosynthesis in MA-10 Leydig cells. J Biol Chem 287(19):15380–15394. doi: 10.1074/jbc.M112.339580 CrossRefGoogle Scholar
  2. Bozorgmehr MR, Housaindokht MR (2006) Prediction of the solubility of cho lesterol and its esters in supercritical carbon dioxide. Chem Eng Technol 29(12):1481–1486. doi: 10.1002/ceat.200600130 CrossRefGoogle Scholar
  3. Copikova J, Taubner T, Tuma J, Synytsya A, Duskova D, Marounek M (2015) Cholesterol and fat lowering with hydrophobic polysaccharide derivatives. Carbohydr Polym 116:207–214. doi: 10.1016/j.carbpol.2014.05.009 CrossRefGoogle Scholar
  4. Dias HMAM, Berbicz F, Pedrochi F, Baesso ML, Matioli G (2010) Butter cholesterol removal using different complexation methods with beta-cyclodextrin, and the contribution of photoacoustic spectroscopy to the evaluation of the complex. Food Res Int 43(4):1104–1110. doi: 10.1016/j.foodres.2010.02.002 CrossRefGoogle Scholar
  5. Frizon TE, Rafique J, Saba S, Bechtold IH, Gallardo H, Braga AL (2015) Synthesis of functionalized organoselenium materials: selenides and diselenides containing cholesterol. Eur J Org Chem 16:3470–3476. doi: 10.1002/ejoc.201500124 CrossRefGoogle Scholar
  6. Ghasemi E, Raofie F, Najafi NM (2011) Application of response surface methodology and central composite design for the optimisation of supercritical fluid extraction of essential oils from Myrtus communis L. leaves. Food Chem 126(3):1449–1453. doi: 10.1016/j.foodchem.2010.11.135 CrossRefGoogle Scholar
  7. Gupta M, Pal SK (2015) The first examples of room temperature liquid crystal dimers based on cholesterol and pentaalkynylbenzene. Liq Cryst 42(9):1250–1256. doi: 10.1080/02678292.2015.1036817 CrossRefGoogle Scholar
  8. Hou Z, Zheng Y, Gao Y, Liu X, Yuan F, Liu G (2010a) Optimization of supercritical carbon dioxide removal of lipid and cholesterol from goat placenta using response surface methodology. Food Bioprod Process 88(C2–3):298–304. doi: 10.1016/j.fbp.2009.12.001 CrossRefGoogle Scholar
  9. Hou Z, Zheng Y, Gao Y, Liu X, Yuan F, Liu G (2010b) Optimization of supercritical carbon dioxide removal of lipid and cholesterol from goat placenta using response surface methodology. Food Bioprod Process 88(C2–3):298–304. doi: 10.1016/j.fbp.2009.12.001 CrossRefGoogle Scholar
  10. Ilaiyaraja N, Likhith K, Babu GRS, Khanum F (2015) Optimisation of extraction of bioactive compounds from Feronia limonia (wood apple) fruit using response surface methodology (RSM). Food Chem 173:348–354. doi: 10.1016/j.foodchem.2014.10.035 CrossRefGoogle Scholar
  11. Lee SS, Kim B, Kim SK, Won JC, Kim YH, Kim S (2015) Robust microfluidic encapsulation of cholesteric liquid crystals toward photonic ink capsules. Adv Mater 27(4):627–633. doi: 10.1002/adma.201403271 CrossRefGoogle Scholar
  12. Li J, Ma C, Ma Y, Li Y, Zhou W, Xu P (2007) Medium optimization by combination of response surface methodology and desirability function: an application in glutamine production. Appl Microbiol Biotechnol 74(3):563–571. doi: 10.1007/s00253-006-0699-5 CrossRefGoogle Scholar
  13. London E, Wassif CA, Horvath A, Tatsi C, Angelousi A, Karageorgiadis AS, Stratakis CA (2015) Cholesterol biosynthesis and trafficking in cortisol-producing lesions of the adrenal cortex. J Clin Endocrinol Metab 100(10):3660–3667. doi: 10.1210/jc.2015-2212 CrossRefGoogle Scholar
  14. Lu J, Wu D, Rohani S (2014) Influence of Ca2+ on cholesterol crystallization from supersaturated model biles. Fluid Phase Equilib 367:51–56. doi: 10.1016/j.fluid.2014.01.031 CrossRefGoogle Scholar
  15. Olivares A, Martinez I, Illanes A (2012) Enzyme assisted fractionation of wood sterols mixture by short path distillation. Chem Eng J 191:557–562. doi: 10.1016/j.cej.2012.03.034 CrossRefGoogle Scholar
  16. Shan H, Pang JH, Li SR, Chiang TB, Wilson WK, Schroepfer GJ (2003) Chromatographic behavior of oxygenated derivatives of cholesterol. Steroids 68(3):221–233. doi: 10.1016/S0039-128X(02)00185-X CrossRefGoogle Scholar
  17. Sinha A, Basiruddin SK, Chakraborty A, Jana NR (2015) Beta-cyclodextrin functionalized magnetic mesoporous silica colloid for cholesterol separation. ACS Appl Mater Interfaces 7(2):1340–1347. doi: 10.1021/am507817b CrossRefGoogle Scholar
  18. Su Y, Tian Y, Yan R, Wang C, Niu F, Yang Y (2015) Study on a novel process for the separation of phospholipids, triacylglycerol and cholesterol from egg yolk. J Food Sci Technol Mysore 52(7):4586–4592. doi: 10.1007/s13197-014-1513-5 CrossRefGoogle Scholar
  19. Vedaraman N, Srinivasakannan C, Brunner G, Rao PG (2008) Kinetics of cholesterol extraction using supercritical carbon dioxide with cosolvents. Ind Eng Chem Res 47(17):6727–6733. doi: 10.1021/ie070703q CrossRefGoogle Scholar
  20. Wang H, Liu M, Du S (2014) Optimization of madecassoside liposomes using response surface methodology and evaluation of its stability. Int J Pharm 473(1–2):280–285. doi: 10.1016/j.ijpharm.2014.07.010 CrossRefGoogle Scholar
  21. Zhu J, Shao J (2006) Patent No. CN 1263769-C. Beijing: State Intellectual Property Office of the P.R.CGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  1. 1.School of Environmental Science and EngineeringTianjin UniversityTianjinChina
  2. 2.Tianjin Academy of Environmental SciencesTianjinChina
  3. 3.Tianjin United Environmental Engineering Design Company LimitedTianjinChina

Personalised recommendations