Skip to main content
Log in

Controlled synthesis of graphene oxide/alumina nanocomposites using a new dry sol–gel method of synthesis

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The present paper gives new insight into the problem of controlling the morphology of reduced graphene oxide/alumina (RGO/Al2O3) nanocomposites. The dry and simplified sol–gel methods of RGO/Al2O3 nanocomposite synthesis were compared and the influence of six key synthesis parameters on the morphology of the resulting nanocomposite powders was investigated to optimize the morphology of RGO/Al2O3 nanocomposites in terms of reducing the undesired agglomeration of RGO/Al2O3 nanocomposite flakes to a significant minority and obtaining the uniform coverage of RGO surface with Al2O3 nanoparticles. Our investigations indicate that, despite the high excess of Al2O3 used (95 wt%), the lowest RGO/Al2O3 flake agglomeration and the formation of a uniform layer composed of Al2O3 nanoparticles with the average size of 58 nm occurred only when 5 wt% of graphene oxide was used as a substrate for the deposition of Al2O3 nanoparticles together with triethyl aluminium as an Al2O3 precursor and dry hexane as the reaction environment. The resulting organic precursor was thermally decomposed at 280 °C for 3 h in air atmosphere (R4 reaction pathway). This was confirmed by the high BET-specific surface area (242.4 m2/g) and the high open porosity (0.7 cm3/g) of the obtained RGO(5 wt%)/Al2O3 nanocomposite. This is also the first study with a detailed discussion of the reactions expected to occur during the synthesis of an RGO/Al2O3 nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Barron AR (1993) Reactions of Group 13 alkyls with dioxygen and elemental chalcogens: from carelessness to chemistry. Chem Soc Rev 22:93–99. doi:10.1039/CS9932200093

    Article  CAS  Google Scholar 

  • Becerril HA, Man J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470. doi:10.1021/nn700375n

    Article  CAS  Google Scholar 

  • Bolesławski M, Serwatowski J (1983a) Synthesis and structure of alkylaluminoxanes. J Organomet Chem 254:159–166. doi:10.1016/S0022-328X(00)99102-2

    Article  Google Scholar 

  • Bolesławski M, Serwatowski J (1983b) Investigations of the hydrolysis reaction mechanism of organoaluminium compounds. 1H NMR spectroscopic studies on the R3Al/H2O reaction in polar solvents. J Organomet Chem 255:269–278. doi:10.1016/S0022-328X(00)99318-5

    Article  Google Scholar 

  • Erickson K, Erni R, Lee Z, Alem N, Gannett W, Zettl A (2010) Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater 22(40):4467–4472. doi:10.1002/adma.201000732

    Article  CAS  Google Scholar 

  • Fan X, Peng W, Li Y, Li X, Wang S, Zhang G (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20(23):4490–4493. doi:10.1002/adma.200801306

    Article  CAS  Google Scholar 

  • Jastrzębska AM, Kunicki AR, Olszyna AR, Karwowska E (2011a) Al2O3–Ag nanopowders: new method of synthesis, characterization and biocidal activity. Adv Appl Ceram 110(2):108–113. doi:10.1179/1743676110Y.0000000014

    Article  Google Scholar 

  • Jastrzębska AM, Radziun E, Rosłon M, Kunicki AR, Olszyna AR, Dudkiewicz-Wilczyńska J, Anuszewska E, Karwowska E (2011b) In vitro assessment of antibacterial properties and cytotoxicity of Al2O3-Ag nanopowders. Adv Appl Ceram 110(6):353–359. doi:10.1179/1743676111Y.0000000023

    Article  Google Scholar 

  • Jastrzębska AM, Kunicki AR, Olszyna AR (2011c) Study of the properties of Al2O3–Ag nanopowders produced by an innovative thermal decomposition-reduction and silver nitrate reduction methods. Key Eng Mater 478:13–18. doi:10.4028/www.scientific.net/KEM.478.13

    Article  Google Scholar 

  • Jastrzębska AM, Kurtycz P, Olszyna AR (2012) Recent advances in graphene family materials toxicity investigations. J Nanopart Res 14(1320):1–21. doi:10.1007/s11051-012-1320-8

    Google Scholar 

  • Jastrzębska AM, Karwowska E, Tabernacka A, Mosdorf P, Polis P, Kurtycz P, Olszyna A, Kunicki AR (2013) New non phyto- and eco-toxic alumina-stabilized silver and praseodymium nanoparticles. Int J Appl Ceram Technol 10(6):908–916. doi:10.1111/j.1744-7402.2012.02834.x

    Article  Google Scholar 

  • Jastrzębska AM, Kurtycz P, Olszyna AR, Jureczko J, Kunicki AR (2014) New alumina-based novel ceramic nanopigments: an alternative to the purple of cassius. Int J Appl Ceram Technol 11(4):738–744. doi:10.1111/ijac.12099

    Article  Google Scholar 

  • Jastrzębska AM, Jureczko J, Kunicki AR, Olszyna AR (2015a) New reduced graphene oxide/alumina (RGO/Al2O3) nanocomposite: innovative method of synthesis and characterization. Int J Appl Ceram Technol 12(3):522–528. doi:10.1111/ijac.12183

    Article  Google Scholar 

  • Jastrzębska AM, Karwowska E, Olszyna AR, Kunicki A (2015b) Influence of bacteria adsorption on zeta potential of Al2O3 and Al2O3/Ag nanoparticles in electrolyte and drinking water environment studied by means of zeta potential. Surf Coat Technol 271:225–233. doi:10.1016/j.surfcoat.2014.12.015

    Article  Google Scholar 

  • Jastrzębska AM, Karcz J, Letmanowski R, Zabost D, Ciecierska E, Zdunek J, Karwowska E, Siekierski M, Olszyna A, Kunicki A (2016) Synthesis of the RGO/Al2O3 core-shell nanocomposite flakes and characterization of their unique electrostatic properties using zeta potential measurements. Appl Surf Sci 362:577–594. doi:10.1016/j.apsusc.2015.10.125

    Article  Google Scholar 

  • Jiang G, Lin Z, Chen C, Zhu L, Chang Q, Wang N, Wei W, Tang H (2011) TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49(8):2693–2701. doi:10.1016/j.carbon.2011.02.059

    Article  CAS  Google Scholar 

  • Jusza A, Anders K, Jastrzębska A, Polis P, Olszyna A, Kuś M, Kunicki A, Piramidowicz R (2011) Luminescent and structural properties of Yb3+-doped Al2O3 nanopowders. Opt Mater 33(10):1487–1491. doi:10.1016/j.optmat.2011.04.015

    Article  CAS  Google Scholar 

  • Karwowska E, Mrozowicz M, Zawada A, Ząbkowski T, Ziemkowska W, Kunicki AR, Olszyna A (2002) Impact of Al2O3 nanopowders characterised by various hysicochemical properties on growth of green alga Scendesmus quadricauda. Adv Appl Ceram 111:142–148. doi:10.1179/1743676111Y.0000000062

    Article  Google Scholar 

  • Lewiński J, Zachara J, Grabska E (1996) Synthesis and molecular structure of (tBuOO)(tBuO)Al(μ-OtBu)2Al(mesal)2. The first structurally characterized (alkylperoxo)aluminum compound. J Am Chem Soc 118:6794–6795. doi:10.1021/ja961083f

    Article  Google Scholar 

  • Lewiński J, Zachara J, Kopeć T, Madura I, Prowotorow I (1999) On the mechanism of four-coordinate aluminum alkyls interaction with dioxygen: evidence for spatial demands in the autoxidation reaction. Inorg Chem Commun 2:131–134. doi:10.1016/S1387-7003(99)00029-5

    Article  Google Scholar 

  • Lewiński J, Zachara J, Goś P, Grabska E, Kopeć T, Madura I, Marciniak W, Prowotorow I (2000) Reactivity of various four-coordinate aluminum alkyls towards dioxygen: evidence for spatial requirements in the insertion of an oxygen molecule into the Al–C bond. Chem A Eur J 6:3215–3227. doi:10.1002/1521-3765(20000901)6:17<3215:AID-CHEM3215>3.0.CO;2-8

    Article  Google Scholar 

  • Li Y, Zhang P, Du Q, Peng X, Liu T, Wang Z, Xia Y, Zhang W, Wang K, Zhu H, Wu D (2011) Adsorption of fluoride from aqueous solution by graphene. J Colloid Interface Sci 363(1):348–354. doi:10.1016/j.jcis.2011.07.032

    Article  CAS  Google Scholar 

  • Liang Y, Wang H, Sanchez Casalongue H, Chen Z, Dai H (2010) TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res 3(10):701–705. doi:10.1007/s12274-010-0033-5

    Article  CAS  Google Scholar 

  • Mason MR, Smith JM, Bott SG, Barron AR (1993) Hydrolysis of tri-tert-butylaluminum: the first structural characterization of alkylalumoxanes [(R2Al)2O]n and (RAlO)n. J Am Chem Soc 115:4971–4984. doi:10.1021/ja00065a005

    Article  CAS  Google Scholar 

  • Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O (2009) Evolution of electrical, chemical and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 19(16):2577–2583. doi:10.1002/adfm.200900166

    Article  CAS  Google Scholar 

  • Mavarro CG, Meyer JC, Sundaram RS, Chuvilin A, Kurasch S, Burghard M (2010) Atomic structure of reduced graphene oxide. Nano Lett 10(4):1144–1148. doi:10.1021/nl9031617

    Article  Google Scholar 

  • Neto C, Guinea AF, Peres NM, Novoselov KSS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162. doi:10.1103/RevModPhys.81.109

    Article  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV (2004) Electric field effect in atomically thin carbon films. Science 306(22):666–669. doi:10.1126/science.1102896

    Article  CAS  Google Scholar 

  • Pasynkiewicz S, Sadownik A, Kunicki A (1977) Proton magnetic resonance evidence for the dimethylaluminium hydroxide. J Organomet Chem 124:265–269. doi:10.1016/S0022-328X(00)92590-7

    Article  CAS  Google Scholar 

  • Peter A, Mihaly-Cozmuta L, Mihaly-Cozmuta A, Nicula C, Jastrzębska A, Kurtycz P, Olszyna A (2015) Morphology, structure, and photoactivity of two types of graphene oxide–TiO2 composites. Chem Pap 69(6):839–855. doi:10.1515/chempap-2015-0088

    Article  CAS  Google Scholar 

  • Polis P, Mosdorf P, Karwowska E, Jastrzebska A, Olszyna A, Kunicki A, Piramidowicz R, Anders K, Jusza A (2013) Influence of Al2O3/Pr nanoparticles on soil, air and water microorganisms. Adv Struct Mater 29:1–8. doi:10.1007/978-3-642-31470-4_1

    Article  Google Scholar 

  • Qadeer R, Ikram S (2005) Cobalt impregnated alumina: nitrogen adsorption study at 77 K. Turk J Chem 29:101–106

    CAS  Google Scholar 

  • Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19(12):1987–1992. doi:10.1002/adfm.200900167

    Article  CAS  Google Scholar 

  • Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271. doi:10.1016/j.pmatsci.2011.03.003

    Article  CAS  Google Scholar 

  • Srinivas G, Zhu Y, Piner R, Skipper N, Ellerby M, Ruoff R (2010) Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon 48:630–635. doi:10.1016/j.carbon.2009.10.003

    Article  CAS  Google Scholar 

  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565. doi:10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  • Storre J, Klemp A, Roesky HW, Schmidt H-G, Noltemeyer M, Fleischer R, Stalke D (1996) Hydrolysis of trimesitylgallium and trimesitylaluminum: structures along a reaction pathway. J Am Chem Soc 118:1380–1386. doi:10.1021/ja953213a

    Article  CAS  Google Scholar 

  • Tian J, Liu Y, Tian S, Liu D, Liu C (2015) Fabrication of alumina/graphene composite and its catalytic application property in the selective hydrodesulfurization of fcc gasoline oil. www.paper.edu.cn/en_releasepaper/downPaper/201203-189.html. Accessed 18 Aug 2016

  • Wang S, Chia PJ, Chua LL, Zhao LH, Png RQ, Sivaramakrishnan S (2008) Band-like transport in surface-functionalized highly solution-processable graphene nanosheets. Adv Mater 20(18):3440–3446. doi:10.1002/adma.200800279

    Article  CAS  Google Scholar 

  • Wang H, Robinson JT, Diankov G, Dai H (2010) Nanocrystal growth on graphene with various degrees of oxidation. J Am Chem Soc 132(10):3270–3271. doi:10.1021/ja100329d

    Article  CAS  Google Scholar 

  • Watcharotone S, Dikin DA, Stankovich S, Piner R, Jung I, Dommett GHB (2007) Graphene–silica composite thin films as transparent conductors. Nano Lett 7(7):1888–1892. doi:10.1021/nl070477+

    Article  CAS  Google Scholar 

  • Wu ZS, Ren W, Gao L, Liu B, Jiang C, Cheng HM (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2):493–499. doi:10.1016/j.carbon.2008.10.031

    Article  CAS  Google Scholar 

  • Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA Jr, Ruoff RS (2009a) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47(1):145–152. doi:10.1016/j.carbon.2008.09.045

    Article  CAS  Google Scholar 

  • Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y (2009b) Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem 19(18):2710–2714. doi:10.1039/b821416f

    Article  CAS  Google Scholar 

  • Zhang Y, Mo G, Li X, Zhang W, Zhang J, Ye J, Huang X, Yu C (2011) A graphene modified anode to improve the performance of microbial fuel cells. J Power Sources 196(13):5402–5407. doi:10.1016/j.jpowsour.2011.02.067

    Article  CAS  Google Scholar 

  • Ziemkowska W, Basiak D, Kunicki A, Zawada A, Kurtycz P, Olszyna A (2014) Controlled synthesis of alumina using trialkylaluminium as starting materials. Main Group Chem 13(2):105–115. doi:10.3233/MGC-140126

    CAS  Google Scholar 

Download references

Acknowledgements

The study was accomplished thanks to the funds allotted by the National Science Centre on basis of decision no. DEC-2013/09/D/ST8/04001, within the framework of the research Project No. UMO-2013/09/D/ST8/04001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Maria Jastrzębska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jastrzębska, A.M., Jureczko, J., Karcz, J. et al. Controlled synthesis of graphene oxide/alumina nanocomposites using a new dry sol–gel method of synthesis. Chem. Pap. 71, 579–595 (2017). https://doi.org/10.1007/s11696-016-0040-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0040-4

Keywords

Navigation