Advertisement

Chemical Papers

, Volume 71, Issue 1, pp 67–70 | Cite as

Determination of non-polar heterocyclic aromatic amines in roasted coffee by SPE-HPLC-FLD

  • Deimantė Karpavičiūtė
  • Michael Murkovic
  • Rimantė Vinauskienė
  • Rimantas VenskutonisEmail author
Original Paper

Abstract

The non-polar heterocyclic aromatic amines (HAAs) are formed as pyrolysis products of amino acids at higher temperatures. Green coffee beans were roasted at 240 °C from 5 to 14.5 min (four levels). Solid-phase extraction coupled to high-performance liquid chromatography with fluorescence detection (HPLC-FLD) was used for identification and quantification of five HAAs (Glu-P 2, Glu-P 1, Phe-P 1, AαC, and MeAαC) in roasted coffee. The excitation and emission wavelength program was optimized for non-polar HAAs. The analytes were eluted with eluent A (76% water, 14% acetonitrile, 8% methanol, and 2% acetic acid; pH = 5) and B (acetonitrile) in gradient mode. The limits of detection for non-polar HAAs were in the range of 0.21–0.51 ng/g, the limits of quantification from 0.38 to 0.93 ng/g with a recovery of 40–56%. From the tested HAAs, only AαC was present in roasted coffee; Glu-P 2, Glu-P 1, Phe-P 1, and MeAαC were not found in any coffee sample.

Keywords

Non-polar heterocyclic aromatic amines Roasted coffee SPE-HPLC-FLD 

References

  1. Casal S, Mendes E, Fernandes JO, Oliveira MBPP, Ferreira MA (2004) Analysis of heterocyclic aromatic amines in foods by gas chromatography-mass spectrometry as their tert.-butyldimethylsilyl derivatives. J Chromatogr A 1040(105–114):105. doi: 10.1016/j.chroma.2004.03.054 CrossRefGoogle Scholar
  2. Gross GA, Grüter A (1992) Quantitation of mutagenic/carcinogenic heterocyclic aromatic amines in food products. J Chromatogr 592(1–2):271–278 PMID:1583097 CrossRefGoogle Scholar
  3. Guy PA, Gremaud E, Richoz J, Turesky RJ (2000) Quantitative analysis of mutagenic heterocyclic aromatic amines in cooked meat using liquid chromatography-atmospheric pressure chemical ionisation tandem mass spectrometry. J Chromatogr A 883(1):89–102. doi: 10.1016/S0021-9673(00)00361-7 CrossRefGoogle Scholar
  4. Herraiz T (2002) Identification and occurrence of the bioactive betacarbolines norharman and harman in coffee brews. Food Addit Contam 19(8):748–754. doi: 10.1080/02652030210145892 CrossRefGoogle Scholar
  5. IARC Monographs of the evolution of carcinogenic risks to humans (1993) Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and Mycotoxins. Heterocycl Aromat Amines 56:163–244Google Scholar
  6. Jägerstad M, Skog K, Arvidsson P, Solyakov A (1998) Chemistry, formation and occurrence of genotoxic heterocyclic amines identified in model systems and cooked foods. Zeitschrift für Lebensmittel Untersuchung und Forschung 207(6):419–427. doi: 10.1007/s002170050355
  7. Murkovic M (2004) Formation of heterocyclic amines in model systems. J Chromatogr B 802(1):3–10. doi: 10.1016/j.jchromb.2003.09.026 CrossRefGoogle Scholar
  8. Murkovic M, Derler K (2006) Analysis of amino acids and carbohydrates in green coffee. J Biochem Biophys Methods 69(1–2):25–32. doi: 10.1016/j.jbbm.2006.02.001 CrossRefGoogle Scholar
  9. Richling E, Decker C, Haring D, Herderich M, Schreier P (1997) Analysis of heterocyclic aromatic amines in wine by high-performance liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 791(1–2):71–77. doi: 10.1016/S0021-9673(97)00842-X CrossRefGoogle Scholar
  10. Skog K (1993) Cooking procedures and food mutagensa literature review. Food Chem Toxicol 31(9):655–675. doi: 10.1016/0278-6915(93)90049-5 CrossRefGoogle Scholar
  11. Skog KI, Johansson MAE, Jägerstad MI (1998) Carcinogenic heterocyclic amines in model systems and cooked foods: a review on formation, occurrence and intake. Food Chem Toxicol 36(9–10):51–59. doi: 10.1016/S0278-6915(98)00061-1 Google Scholar
  12. Sugimura T (1997) Overview of carcinogenic heterocyclic amines. Mutat Res 376(1–2):211–219. doi: 10.1016/S0027-5107(97)00045-6 CrossRefGoogle Scholar
  13. Szterk A (2013) Chemical state of heterocyclic aromatic amines in grilled beef: evaluation by in vitro digestion model and comparison of alkaline hydrolysis and organic solvent for extraction. Food Chem Toxicol 62:653–660. doi: 10.1016/j.fct.2013.09.036 CrossRefGoogle Scholar
  14. Szterk A, Jesionkowska K (2015) Influence of the cold storage time of raw beef meat and grilling parameters on sensory quality and content of heterocyclic aromatic amines. LWT Food Sci Technol 61(2):299–308. doi: 10.1016/j.lwt.2014.12.005 CrossRefGoogle Scholar
  15. Szterk A, Waszkiewicz-Robak B (2014) Influence of selected quality factors of beef on the profile and the quantity of heterocyclic aromatic amines during processing at high temperature. Meat Sci 96(3):1177–1184. doi: 10.1016/j.meatsci.2013.11.019 CrossRefGoogle Scholar
  16. Szterk A, Roszko M, Cybulski A (2012a) Determination of azaarenes in oils using the LC-APCI-MS/MS technique: new environmental toxicant in food oils. J Sep Sci 35(21):2858–2865. doi: 10.1002/jssc.201200570 CrossRefGoogle Scholar
  17. Szterk A, Roszko M, Małek K, Kurek M, Zbieć M, Waszkiewicz-Robak B (2012b) Profiles and concentrations of heterocyclic aromatic amines formed in beef during various heat treatments depend on the time of ripening and muscle type. Meat Sci 92(4):587–595. doi: 10.1016/j.meatsci.2012.06.004 CrossRefGoogle Scholar
  18. Toribio F, Moyano E, Puignou L, Galceran MT (2000) Determination of heterocyclic aromatic amines in meat extracts by liquid chromatography-ion-trap atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 869(1,2):307–317. doi: 10.1016/S0021-9673(99)01091-2
  19. Totsuka Y, Ushiyama H, Ishihara J, Sinha R, Goto S, Sugimura T, Wakabayashi K (1999) Quantification of the co-mutagenic β-carbolines, norharman and harman, in cigarette smoke condensates and cooked foods. Cancer Lett 143(2):139–143. doi: 10.1016/S0304-3835(99)00143-3 CrossRefGoogle Scholar
  20. Wabaidur SM, Lee SH, Alothman ZA, Siddiqui MR, Alam SM (2013) Second derivative synchronous fluorimetric method for simultaneous determination of harman and norharman in coffee samples. Spectrochim Acta Part A Mol Biomol Spectrosc 110:179–184. doi: 10.1016/j.saa.2013.03.045 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Deimantė Karpavičiūtė
    • 1
  • Michael Murkovic
    • 2
  • Rimantė Vinauskienė
    • 1
  • Rimantas Venskutonis
    • 1
    Email author
  1. 1.Department of Food Science and TechnologyKaunas University of TechnologyKaunasLithuania
  2. 2.Institute of BiochemistryGraz University of TechnologyGrazAustria

Personalised recommendations