Advertisement

Chemical Papers

, Volume 71, Issue 1, pp 49–57 | Cite as

Direct synthesis of propylene oxide using hydrogen peroxide in a membrane reactor

  • Yu GuoEmail author
  • Yujia Jin
  • Hongmei WuEmail author
  • Dongxin Li
  • Xianfeng Fan
  • Lidai Zhou
  • Xiongfu Zhang
Original Paper

Abstract

The epoxidation of propylene to propylene oxide (PO) with hydrogen peroxide was carried out in a titanium silicalite-1 (TS-1) catalytic membrane reactor. The TS-1 catalytic membrane with a thickness of 4–5 μm was fabricated on a tubular porous α-Al2O3 substrate. The structure and morphology of the membranes were characterized by scanning electron microscope, X-ray diffractometer, FT-IR, and a UV–vis spectrometer. Reaction conditions including temperature, pressure and H2O2 concentration were investigated for their effects on H2O2 conversion, PO selectivity and PO formation rate. The PO formation rate on the TS-1 catalytic membrane is more than twice as high as that on the TS-1 powder catalyst. Moreover, the regeneration tests of the TS-1 membrane reactor showed that the catalytic membrane kept relatively stable H2O2 conversion of and PO selectivity for eight reactions.

Keywords

Membrane reactor Propylene oxide Epoxidation Titanium silicalite-1 Hydrogen peroxide 

Notes

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (Grant No. 21103076) and Program for Liaoning Excellent Talents in University (Grant No. LJQ2012055). The authors also gratefully acknowledge the support of the China Scholarship Council (CSC).

References

  1. Arca V, Boscolo Boscoletto A, Fracasso N, Meda L, Ranghino G (2006) Epoxidation of propylene on Zn-treated TS-1 catalyst. J Mol Catal A: Chem 243:264–277. doi: 10.1016/j.molcata.2005.08.040 CrossRefGoogle Scholar
  2. Bassler P, Weidenbach M, Goebbel H (2010) The new HPPO process for propylene oxide: from joint development to worldscale production. Chem Eng Trans 21:571–576. doi: 10.3303/CET1021096 Google Scholar
  3. Bordiga S, Damin A, Bonino F, Zecchina A, Spanò G, Rivetti F, Bolis V, Prestipino C, Lamberti C (2002) Effect of interaction with H2O and NH3 on the vibrational, electronic, and energetic peculiarities of Ti(IV) centers TS-1 catalysts: a spectroscopic and computational study. J Phys Chem B 106:9892–9905. doi: 10.1021/jp026106t CrossRefGoogle Scholar
  4. Cavani F, Teles JH (2009) Sustainability in catalytic oxidation: an alternative approach or a structural evolution? ChemSusChem 2:508–534. doi: 10.1002/cssc.200900020 CrossRefGoogle Scholar
  5. Chen LY, Chuah GK, Jaenicke S (1998) Propylene epoxidation with hydrogen peroxide catalyzed by molecular sieves containing framework titanium. J Mol Catal A: Chem 132:281–292. doi: 10.1016/S1381-1169(97)00276-8 CrossRefGoogle Scholar
  6. Cheng WG, Wang XS, Li G, Guo XW, Zhang SJ (2008) Highly efficient epoxidation of propylene to propylene oxide over TS-1 using urea + hydrogen peroxide as oxidizing agent. J Catal 255:343–346. doi: 10.1016/j.jcat.2008.02.018 CrossRefGoogle Scholar
  7. Clerici MG, Bellussi G, Romano U (1991) Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. J Catal 129:159–167. doi: 10.1016/0021-9517(91)90019-Z CrossRefGoogle Scholar
  8. Davies L, McMorn P, Bethell D, Page P, King F, Hancock FE, Hutchings GJ (2000) By-product formation causes leaching of Ti from the redox molecular sieve TS-1. Chem Commun 18:1807–1808. doi: 10.1039/B002055I CrossRefGoogle Scholar
  9. Feng X, Duan X, Qian G, Zhou X, Chen D, Yuan W (2014) Insights into size-dependent activity and active sites of Au nanoparticles supported on TS-1 for propene epoxidation with H2 and O2. J Catal 317:99–104. doi: 10.1016/j.jcat.2014.05.006 CrossRefGoogle Scholar
  10. Jin F, Lin TH, Chang CC, Wan BZ, Lee JF, Cheng S (2015) Gold supported on Ti incorporated MCM-36 as efficient catalysts in propylene epoxidation with H2 and O2. RSC Advances 5:61710–61718. doi: 10.1039/C5RA08621C CrossRefGoogle Scholar
  11. Kamata K, Yonehara K, Sumida Y, Yamaguchi K, Hikichi S, Mizuno N (2003) Efficient epoxidation of olefins with ≥99% selectivity and use of hydrogen peroxide. Science 300:964–966. doi: 10.1126/science.1083176 CrossRefGoogle Scholar
  12. Lau WN, Yeung KL, Martin-Aranda R (2008) Knoevenagel condensation reaction between benzaldehyde and ethyl acetoacetate in microreactor and membrane microreactor. Microporous Mesoporous Mater 115:156–163. doi: 10.1016/j.micromeso.2007.12.036 CrossRefGoogle Scholar
  13. Laufer W, Meiers R, Hölderich W (1999) Propylene epoxidation with hydrogen peroxide over palladium containing titanium silicalite. J Mol Catal A: Chem 141:215–221. doi: 10.1016/S1381-1169(98)00265-9 CrossRefGoogle Scholar
  14. Li G, Wang X, Yan H, Chen Y, Su Q (2001) Effect of sodium ions on propylene epoxidation catalyzed by titanium silicalite. Appl Catal A 218:31–38. doi: 10.1016/S0926-860X(01)00607-X CrossRefGoogle Scholar
  15. Li G, Wang XS, Yan HS, Liu YH, Liu XW (2002a) Epoxidation of propylene using supported titanium silicalite catalysts. Appl Catal A 236:1–7. doi: 10.1016/S0926-860X(02)00288-0 CrossRefGoogle Scholar
  16. Li YG, Lee YM, Porter JF (2002b) The synthesis and characterization of titanium silicalite-1. J Mater Sci 37:1959–1965. doi: 10.1023/A:1015234812360 CrossRefGoogle Scholar
  17. Li H, Lei Q, Zhang XM, Suo JH (2012) Nitrogen-incorporated TS-1 zeolite: synthesis, characterization and application in the epoxidation of propylene. Microporous Mesoporous Mater 147:110–116. doi: 10.1016/j.micromeso.2011.05.035 CrossRefGoogle Scholar
  18. Li YC, Shen BX, Zhao JG (2013) Effect of propylene glycol monomethyl ether and rust impurities on TS-1 deactivation in propylene epoxidation. Catal Today 212:169–174. doi: 10.1016/j.cattod.2012.09.039 CrossRefGoogle Scholar
  19. Liu XW, Wang XS, Guo XW, Li G, Yan HS (2004) Regeneration of lamina TS-1 catalyst in the epoxidation of propylene with hydrogen peroxide. Catal Lett 97:223–229. doi: 10.1023/B:CATL.0000038588.57599.c7 CrossRefGoogle Scholar
  20. Lu J, Zhang X, Bravo-Suárez JJ, Bando KK, Fujitani T, Oyama ST (2007) Direct propylene epoxidation over barium-promoted Au/Ti-TUD catalysts with H2 and O2: effect of Au particle size. J Catal 250:350–359. doi: 10.1016/j.jcat.2007.06.006 CrossRefGoogle Scholar
  21. Mimoun H (1987) Do metal peroxides as homolytic and heterolytic oxidative reagents. Mechanism of the halcon epoxidation process. Catal Today 1:281–295. doi: 10.1016/0920-5861(87)80012-3 CrossRefGoogle Scholar
  22. Moliner M, Corma A (2014) Advances in the synthesis of titanosilicates: from the medium pore TS-1 zeolite to highly-accessible ordered materials. Microporous Mesoporous Mater 189:31–40. doi: 10.1016/j.micromeso.2013.08.003 CrossRefGoogle Scholar
  23. Nijhuis TA, Makkee M, Moulijn JA, Weckhuysen BM (2006) The production of propene Oxide: catalytic processes and recent developments. Ind Eng Chem Res 45:3447–3459. doi: 10.1021/ie0513090 CrossRefGoogle Scholar
  24. Oyama ST, Zhang XM, Lu JQ, Gu YF, Fujitani T (2008) Epoxidation of propylene with H2 and O2 in the explosive regime in a packed-bed catalytic membrane reactor. J Catal 257:1–4. doi: 10.1016/j.jcat.2008.04.023 CrossRefGoogle Scholar
  25. Park S, Cho KM, Youn MH, Seo JG, Jung JC, Baeck SH, Kim TJ, Chung YM, Oh SH, Song IK (2008) Direct epoxidation of propylene with hydrogen peroxide over TS-1 catalysts: effect of hydrophobicity of the catalysts. Catal Commun 9:2485–2488. doi: 10.1016/j.catcom.2008.07.003 CrossRefGoogle Scholar
  26. Qi C, Huang J, Bao S, Su H, Akita T, Haruta M (2011) Switching of reactions between hydrogenation and epoxidation of propene over Au/Ti-based oxides in the presence of H2 and O2. J Catal 281:12–20. doi: 10.1016/j.jcat.2011.03.028 CrossRefGoogle Scholar
  27. Qiu FR, Wang XB, Zhang XF, Liu HO, Liu SQ, Yeung KL (2009) Preparation and properties of TS-1 zeolite and film using Sil-1 nanoparticles as seeds. Chem Eng J 147:316–322. doi: 10.1016/j.cej.2008.11.034 CrossRefGoogle Scholar
  28. Sacaliuc E, Beale AM, Weckhuysen BM, Nijhuis TA (2007) Propene epoxidation over Au/Ti-SBA-15 catalysts. J Catal 248:235–248. doi: 10.1016/j.jcat.2007.03.014 CrossRefGoogle Scholar
  29. Serrano DP, Sanz R, Pizarro P, Moreno I, de Frutos P, Blázquez S (2009) Preparation of extruded catalysts based on TS-1 zeolite for their application in propylene epoxidation. Catal Today 143:151–157. doi: 10.1016/j.cattod.2008.09.039 CrossRefGoogle Scholar
  30. Shin SB, Chadwick D (2010) Kinetics of heterogeneous catalytic epoxidation of propene with hydrogen peroxide over titanium silicalite (TS-1). Ind Eng Chem Res 49:8125–8134. doi: 10.1021/ie100083u CrossRefGoogle Scholar
  31. Song WC, Zuo Y, Xiong G, Zhang XF, Jin FY, Liu LP, Wang XS (2014) Transformation of SiO2 in Titanium Silicalite-1/SiO2 extrudates during tetrapropylammonium hydroxide treatment and improvement of catalytic properties for propylene epoxidation. Chem Eng J 253:464–471. doi: 10.1016/j.cej.2014.05.075 CrossRefGoogle Scholar
  32. Taramasso M, Perego G, Notari B (1983) U.S. Patent No. 4,410,501.U.S. Patent and Trademark Office, Washington, D.C.Google Scholar
  33. Teles JH, Rehfinger A, Bassler P, Wenzel A, Rieber N, Rudolf P (2004) U.S. Patent No. 6,756,503. U.S. Patent and Trademark Office, Washington, D.C.Google Scholar
  34. Thiele GF, Roland E (1997) Propylene epoxidation with hydrogen peroxide and titanium silicalite catalyst: activity, deactivation and regeneration of the catalyst. J Mol Catal A: Chem 117:351–356. doi: 10.1016/S1381-1169(96)00266-X CrossRefGoogle Scholar
  35. Truter LA, Perez Ferrandez DM, Schouten JC, Nijhuis TA (2015) TS-1 coated microreactor for selective oxidations. Appl Catal A 490:139–145. doi: 10.1016/j.apcata.2014.11.019 CrossRefGoogle Scholar
  36. Wan YSS, Yeung KL, Gavriilidis A (2005) TS-1 oxidation of aniline to azoxybenzene in a microstructured reactor. Appl Catal A 281:285–293. doi: 10.1016/j.apcata.2004.11.041 CrossRefGoogle Scholar
  37. Wang QF, Wang L, Chen JX, Wu YL, Mi ZT (2007) Deactivation and regeneration of titanium silicalite catalyst for epoxidation of propylene. J Mol Catal A: Chem 273:73–80. doi: 10.1016/j.molcata.2007.03.068 CrossRefGoogle Scholar
  38. Wang XB, Zhang XF, Liu HO, Yeung KL, Wang JQ (2010) Preparation of titanium silicalite-1 catalytic films and application as catalytic membrane reactors. Chem Eng J 156:562–570. doi: 10.1016/j.cej.2009.04.018 CrossRefGoogle Scholar
  39. Wang XB, Tan XY, Meng B, Zhang XF, Liang Q, Pan H, Liu SM (2013) One-step hydroxylation of benzene to phenol via a Pd capillary membrane microreactor. Catal Sci Technol 3:2380–2391. doi: 10.1039/c3cy00159h CrossRefGoogle Scholar
  40. Wong WC, Au LTY, Tellez C, Yeung KL (2001) Effects of synthesis parameters on the zeolite membrane growth. J Membr Sci 191:143–163. doi: 10.1016/S0376-7388(01)00453-7 CrossRefGoogle Scholar
  41. Wu GQ, Wang YQ, Wang L, Feng WP, Shi HN, Lin Y, Zhang T, Jin X, Wang SH, Wu XX, Yao PX (2013) Epoxidation of propylene with H2O2 catalyzed by supported TS-1 catalyst in a fixed-bed reactor: experiments and kinetics. Chem Eng J 215–216:306–314. doi: 10.1016/j.cej.2012.11.055 CrossRefGoogle Scholar
  42. Xi Z, Zhou N, Sun Y, Li K (2001) Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide. Science 292:1139–1141. doi: 10.1126/science.292.5519.1139 CrossRefGoogle Scholar
  43. Zhang XF, Liu H, Yeung KL (2006) Influence of seed size on the formation and microstructure of zeolite silicalite-1 membranes by seeded growth. Mater Chem Phys 96:42–50. doi: 10.1016/j.matchemphys.2005.06.031 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  1. 1.School of Chemical and Environmental EngineeringLiaoning University of TechnologyJinzhouPeople’s Republic of China
  2. 2.Institute for Materials and Processes, School of EngineeringThe University of EdinburghEdinburghUK
  3. 3.State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations