Skip to main content
Log in

Fabrication of a new gel polymer electrolyte containing core–shell silica–polyelectrolyte nanoparticles via activators regenerated by electron transfer atom transfer radical polymerization (ARGET-ATRP) for high-performance lithiumsulfur batteries

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Presented herein is the fabrication of a new gel polymer electrolyte (GPE) containing core–shell nanoparticles for lithium–sulfur (Li–S) batteries. This work is to overcome drawbacks of poly (vinylidenefluoride) (PVDF)-based GPEs while simultaneously maintaining their beneficial electrochemical properties such as high ionic conductivity at ambient temperature and excellent chemical stability. Core–shell silica nanoparticles with silica as core and poly (vinylbenzenesulfonate) as shell was synthesized via activators regenerated by electron transfer atom transfer radical polymerization and incorporated into PVDF. The obtained composite displays ionic conductivity as high as 1.1 mS cm−1 at room temperature. Electrochemical experiments show that the new GPE acts as an effective electrolyte for high-performance lithium–sulfur batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Cuoq F, Masion A, Labille J, Rose J, Ziarelli F, Prelot B, Bottero J-Y (2013) Preparation of amino-functionalized silica in aqueous conditions. Appl Surf Sci 266:155–160. doi:10.1016/j.apsusc.2012.11.120

    Article  CAS  Google Scholar 

  • Das SK, Mandal SS, Bhattacharyya AJ (2011) Ionic conductivity, mechanical strength and Li-ion battery performance of mono-functional and bi-functional (“Janus”)“soggy sand” electrolytes. Energy Environ Sci 4:1391–1399. doi:10.1039/C0EE00566E

    Article  CAS  Google Scholar 

  • Hassoun J, Scrosati B (2010) Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications. Adv Mater 22:5198–5201. doi:10.1002/adma.201002584

    Article  CAS  Google Scholar 

  • He X, Shi Q, Zhou X, Wan C, Jiang C (2005) In situ composite of nano SiO 2–P (VDF-HFP) porous polymer electrolytes for Li-ion batteries. Electrochim Acta 51:1069–1075. doi:10.1016/j.electacta.2005.05.048

    Article  CAS  Google Scholar 

  • Iddon P, Robinson K, Armes S (2004) Polymerization of sodium 4-styrenesulfonate via atom transfer radical polymerization in protic media. Polymer 45:759–768. doi:10.1016/j.polymer.2003.11.030

    Article  CAS  Google Scholar 

  • Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8:500–506. doi:10.1038/nmat2460

    Article  CAS  Google Scholar 

  • Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y (2011a) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133:18522–18525. doi:10.1021/ja206955k

    Article  CAS  Google Scholar 

  • Ji X, Evers S, Black R, Nazar LF (2011b) Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nature communications 2:325. doi:10.1038/ncomms1293

    Article  Google Scholar 

  • Jin J, Wen Z, Liang X, Cui Y, Wu X (2012) Gel polymer electrolyte with ionic liquid for high performance lithium sulfur battery. Solid State Ionics 225:604–607. doi:10.1016/j.ssi.2012.03.012

    Article  CAS  Google Scholar 

  • Kim W-T, Jeong YU, Choi HC, Kim YJ, Song JH, Lee H, Lee YJ (2011) New anode materials of Li1 + x V1 − x O2 (0 ≤ x ≤ 0.1) for secondary lithium batteries: correlation between structures and properties. J Appl Electrochem 41:803–808. doi:10.1007/s10800-011-0299-7

    Article  CAS  Google Scholar 

  • Kim HS, Jeong C-S, Kim Y-T (2012) Shuttle inhibitor effect of lithium perchlorate as an electrolyte salt for lithium–sulfur batteries. J Appl Electrochem 42:75–79. doi:10.1007/s10800-011-0373-1

    Article  CAS  Google Scholar 

  • Kumar PR, Venkateswarlu M, Satyanarayana N (2012) Three-dimensional lithium manganese phosphate microflowers for lithium-ion battery applications. J Appl Electrochem 42:163–167. doi:10.1007/s10800-012-0383-7

    Article  Google Scholar 

  • Lee Y-S, Ju SH, Kim J-H, Hwang SS, Choi J-M, Sun Y-K, Kim H, Scrosati B, Kim D-W (2012) Composite gel polymer electrolytes containing core-shell structured SiO 2 (Li+) particles for lithium-ion polymer batteries. Electrochem Commun 17:18–21. doi:10.1016/j.elecom.2012.01.008

    Article  CAS  Google Scholar 

  • Li Z, Zhang H, Zhang P, Wu Y (2008) P (VDF-HFP)-based micro-porous composite polymer electrolyte prepared by in situ hydrolysis of titanium tetrabutoxide. J Appl Electrochem 38:109–114. doi:10.1007/s10800-007-9407-0

    Article  CAS  Google Scholar 

  • Li M, Yang B, Zhang Z, Wang L, Zhang Y (2013) Polymer gel electrolytes containing sulfur-based ionic liquids in lithium battery applications at room temperature. J Appl Electrochem 43:515–521. doi:10.1007/s10800-013-0535-4

    Article  CAS  Google Scholar 

  • Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–4039. doi:10.1021/ma3001719

    Article  CAS  Google Scholar 

  • Min K, Gao H, Matyjaszewski K (2007) Use of ascorbic acid as reducing agent for synthesis of well-defined polymers by ARGET ATRP. Macromolecules 40:1789–1791. doi:10.1021/ma0702041

    Article  CAS  Google Scholar 

  • Mondal D, Villemure G, Song C (2014) Synthesis, characterization, and evaluation of unsupported porous NiS submicrometer spheres as a cathode material for lithium batteries. J Appl Electrochem 44:599–606. doi:10.1007/s10800-014-0658-2

    Article  CAS  Google Scholar 

  • Nyström D, Antoni P, Malmström E, Johansson M, Whittaker M, Hult A (2005) Highly-ordered hybrid organic-inorganic isoporous membranes from polymer modified nanoparticles. Macromol Rapid Commun 26:524–528. doi:10.1002/marc.200400617

    Article  Google Scholar 

  • Ohno K, Morinaga T, Koh K, Tsujii Y, Fukuda T (2005) Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization. Macromolecules 38:2137–2142. doi:10.1021/ma048011q

    Article  CAS  Google Scholar 

  • Oriňáková R, Fedorková A, Oriňák A (2013) Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries. Chem Pap 67:860–875. doi:10.2478/s11696-013-0350-8

    Google Scholar 

  • Reddy CVS, Chen M, Jin W, Zhu Q, Chen W, Mho S-I (2007) Characterization of (PVDF + LiFePO4) solid polymer electrolyte. J Appl Electrochem 37:637–642. doi:10.1007/s10800-007-9294-4

    Article  CAS  Google Scholar 

  • Ryu HS, Park JW, Park J, Ahn J-P, Kim K-W, Ahn J-H, Nam T-H, Wang G, Ahn H-J (2013) High capacity cathode materials for Li–S batteries. J Mater Chem A 1:1573–1578. doi:10.1039/C2TA00056C

    Article  CAS  Google Scholar 

  • Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. doi:10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  • Thirunakaran R, Kim T, Yoon W-S (2014) Synthesis and electrochemical characterization on dual-doped LiCoO2 via green chemistry method for lithium rechargeable batteries. J Appl Electrochem 44:709–718. doi:10.1007/s10800-014-0687-x

    Article  CAS  Google Scholar 

  • Ugur M, Kılıç H, Berkem M, Güngör A (2014) Synthesis by UV-curing and characterisation of polyurethane acrylate-lithium salts-based polymer electrolytes in lithium batteries. Chem Pap 68:1561–1572. doi:10.2478/s11696-014-0611-1

    Article  CAS  Google Scholar 

  • Wang J, Zhao Y, Zhuo K, Lin R (2002) A partial-molar volume study of electrolytes in propylene carbonate-based lithium battery electrolyte solutions at 298.15 K. Can J Chem 80:753–760. doi:10.1139/v02-092

    Article  CAS  Google Scholar 

  • Wang J, Liu L, Ling Z, Yang J, Wan C, Jiang C (2003) Polymer lithium cells with sulfur composites as cathode materials. Electrochim Acta 48:1861–1867. doi:10.1016/S0013-4686(03)00258-5

    Article  CAS  Google Scholar 

  • Wang H, Li S, Li D, Chen Z, Liu HK, Guo Z (2014) TiO2 coated three-dimensional hierarchically ordered porous sulfur electrode for the lithium/sulfur rechargeable batteries. Energy 75:597–602. doi:10.1016/j.energy.2014.08.029

    Article  CAS  Google Scholar 

  • Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302. doi:10.1021/cr020731c

    Article  CAS  Google Scholar 

  • Yang C-M, Kim H-S, Na B-K, Kum K-S, Cho BW (2006) Gel-type polymer electrolytes with different types of ceramic fillers and lithium salts for lithium-ion polymer batteries. J Power Sources 156:574–580. doi:10.1016/j.jpowsour.2005.06.018

    Article  CAS  Google Scholar 

  • Yeon S-H, Jung K-N, Yoon S, Shin K-H, Jin C-S, Kim Y (2013) Improved electrochemical performances of sulfur-microporous carbon composite electrode for Li/S battery. J Appl Electrochem 43:245–252. doi:10.1007/s10800-012-0510-5

    Article  CAS  Google Scholar 

  • Zhan LZ, Song ZP, Zhang JY, Tang J, Zhan H, Zhou YH, Zhan CM (2008) Synthesis and properties of novel organic thiolane polymer as cathode material for rechargeable lithium batteries. J Appl Electrochem 38:1691–1694. doi:10.1007/s10800-008-9619-y

    Article  CAS  Google Scholar 

  • Zhang SS (2013) New insight into liquid electrolyte of rechargeable lithium/sulfur battery. Electrochim Acta 97:226–230. doi:10.1016/j.electacta.2013.02.122

    Article  CAS  Google Scholar 

  • Zhang P, Yang L, Li L, Ding M, Wu Y, Holze R (2011) Enhanced electrochemical and mechanical properties of P (VDF-HFP)-based composite polymer electrolytes with SiO 2 nanowires. J Membr Sci 379:80–85. doi:10.1016/j.memsci.2011.05.043

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang Z, Wang X, Li J, Lai Y (2014) Enhanced electrochemical performance of sulfur cathode by incorporation of a thin conductive adhesion layer between the current collector and the active material layer. J Appl Electrochem 44:607–611. doi:10.1007/s10800-014-0660-8

    Article  CAS  Google Scholar 

  • Zhuravlev L (1987) Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir 3:316–318. doi:10.1021/la00075a004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the financial support from research council of Malek Ashtar University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Sovizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sovizi, M.R., Madram, A.R. Fabrication of a new gel polymer electrolyte containing core–shell silica–polyelectrolyte nanoparticles via activators regenerated by electron transfer atom transfer radical polymerization (ARGET-ATRP) for high-performance lithiumsulfur batteries. Chem. Pap. 71, 21–28 (2017). https://doi.org/10.1007/s11696-016-0032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0032-4

Keywords

Navigation