Advertisement

Chemical Papers

, Volume 71, Issue 1, pp 21–28 | Cite as

Fabrication of a new gel polymer electrolyte containing core–shell silica–polyelectrolyte nanoparticles via activators regenerated by electron transfer atom transfer radical polymerization (ARGET-ATRP) for high-performance lithiumsulfur batteries

  • Mohammad Reza SoviziEmail author
  • Ali Reza Madram
Original Paper

Abstract

Presented herein is the fabrication of a new gel polymer electrolyte (GPE) containing core–shell nanoparticles for lithium–sulfur (Li–S) batteries. This work is to overcome drawbacks of poly (vinylidenefluoride) (PVDF)-based GPEs while simultaneously maintaining their beneficial electrochemical properties such as high ionic conductivity at ambient temperature and excellent chemical stability. Core–shell silica nanoparticles with silica as core and poly (vinylbenzenesulfonate) as shell was synthesized via activators regenerated by electron transfer atom transfer radical polymerization and incorporated into PVDF. The obtained composite displays ionic conductivity as high as 1.1 mS cm−1 at room temperature. Electrochemical experiments show that the new GPE acts as an effective electrolyte for high-performance lithium–sulfur batteries.

Keywords

Gel polymer electrolyte Lithium–sulfur batteries Core–shell silica 

Notes

Acknowledgements

The authors gratefully appreciate the financial support from research council of Malek Ashtar University of Technology.

References

  1. Cuoq F, Masion A, Labille J, Rose J, Ziarelli F, Prelot B, Bottero J-Y (2013) Preparation of amino-functionalized silica in aqueous conditions. Appl Surf Sci 266:155–160. doi: 10.1016/j.apsusc.2012.11.120 CrossRefGoogle Scholar
  2. Das SK, Mandal SS, Bhattacharyya AJ (2011) Ionic conductivity, mechanical strength and Li-ion battery performance of mono-functional and bi-functional (“Janus”)“soggy sand” electrolytes. Energy Environ Sci 4:1391–1399. doi: 10.1039/C0EE00566E CrossRefGoogle Scholar
  3. Hassoun J, Scrosati B (2010) Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications. Adv Mater 22:5198–5201. doi: 10.1002/adma.201002584 CrossRefGoogle Scholar
  4. He X, Shi Q, Zhou X, Wan C, Jiang C (2005) In situ composite of nano SiO 2–P (VDF-HFP) porous polymer electrolytes for Li-ion batteries. Electrochim Acta 51:1069–1075. doi: 10.1016/j.electacta.2005.05.048 CrossRefGoogle Scholar
  5. Iddon P, Robinson K, Armes S (2004) Polymerization of sodium 4-styrenesulfonate via atom transfer radical polymerization in protic media. Polymer 45:759–768. doi: 10.1016/j.polymer.2003.11.030 CrossRefGoogle Scholar
  6. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8:500–506. doi: 10.1038/nmat2460 CrossRefGoogle Scholar
  7. Ji L, Rao M, Zheng H, Zhang L, Li Y, Duan W, Guo J, Cairns EJ, Zhang Y (2011a) Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J Am Chem Soc 133:18522–18525. doi: 10.1021/ja206955k CrossRefGoogle Scholar
  8. Ji X, Evers S, Black R, Nazar LF (2011b) Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nature communications 2:325. doi: 10.1038/ncomms1293 CrossRefGoogle Scholar
  9. Jin J, Wen Z, Liang X, Cui Y, Wu X (2012) Gel polymer electrolyte with ionic liquid for high performance lithium sulfur battery. Solid State Ionics 225:604–607. doi: 10.1016/j.ssi.2012.03.012 CrossRefGoogle Scholar
  10. Kim W-T, Jeong YU, Choi HC, Kim YJ, Song JH, Lee H, Lee YJ (2011) New anode materials of Li1 + x V1 − x O2 (0 ≤ x ≤ 0.1) for secondary lithium batteries: correlation between structures and properties. J Appl Electrochem 41:803–808. doi: 10.1007/s10800-011-0299-7 CrossRefGoogle Scholar
  11. Kim HS, Jeong C-S, Kim Y-T (2012) Shuttle inhibitor effect of lithium perchlorate as an electrolyte salt for lithium–sulfur batteries. J Appl Electrochem 42:75–79. doi: 10.1007/s10800-011-0373-1 CrossRefGoogle Scholar
  12. Kumar PR, Venkateswarlu M, Satyanarayana N (2012) Three-dimensional lithium manganese phosphate microflowers for lithium-ion battery applications. J Appl Electrochem 42:163–167. doi: 10.1007/s10800-012-0383-7 CrossRefGoogle Scholar
  13. Lee Y-S, Ju SH, Kim J-H, Hwang SS, Choi J-M, Sun Y-K, Kim H, Scrosati B, Kim D-W (2012) Composite gel polymer electrolytes containing core-shell structured SiO 2 (Li+) particles for lithium-ion polymer batteries. Electrochem Commun 17:18–21. doi: 10.1016/j.elecom.2012.01.008 CrossRefGoogle Scholar
  14. Li Z, Zhang H, Zhang P, Wu Y (2008) P (VDF-HFP)-based micro-porous composite polymer electrolyte prepared by in situ hydrolysis of titanium tetrabutoxide. J Appl Electrochem 38:109–114. doi: 10.1007/s10800-007-9407-0 CrossRefGoogle Scholar
  15. Li M, Yang B, Zhang Z, Wang L, Zhang Y (2013) Polymer gel electrolytes containing sulfur-based ionic liquids in lithium battery applications at room temperature. J Appl Electrochem 43:515–521. doi: 10.1007/s10800-013-0535-4 CrossRefGoogle Scholar
  16. Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–4039. doi: 10.1021/ma3001719 CrossRefGoogle Scholar
  17. Min K, Gao H, Matyjaszewski K (2007) Use of ascorbic acid as reducing agent for synthesis of well-defined polymers by ARGET ATRP. Macromolecules 40:1789–1791. doi: 10.1021/ma0702041 CrossRefGoogle Scholar
  18. Mondal D, Villemure G, Song C (2014) Synthesis, characterization, and evaluation of unsupported porous NiS submicrometer spheres as a cathode material for lithium batteries. J Appl Electrochem 44:599–606. doi: 10.1007/s10800-014-0658-2 CrossRefGoogle Scholar
  19. Nyström D, Antoni P, Malmström E, Johansson M, Whittaker M, Hult A (2005) Highly-ordered hybrid organic-inorganic isoporous membranes from polymer modified nanoparticles. Macromol Rapid Commun 26:524–528. doi: 10.1002/marc.200400617 CrossRefGoogle Scholar
  20. Ohno K, Morinaga T, Koh K, Tsujii Y, Fukuda T (2005) Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization. Macromolecules 38:2137–2142. doi: 10.1021/ma048011q CrossRefGoogle Scholar
  21. Oriňáková R, Fedorková A, Oriňák A (2013) Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries. Chem Pap 67:860–875. doi: 10.2478/s11696-013-0350-8 Google Scholar
  22. Reddy CVS, Chen M, Jin W, Zhu Q, Chen W, Mho S-I (2007) Characterization of (PVDF + LiFePO4) solid polymer electrolyte. J Appl Electrochem 37:637–642. doi: 10.1007/s10800-007-9294-4 CrossRefGoogle Scholar
  23. Ryu HS, Park JW, Park J, Ahn J-P, Kim K-W, Ahn J-H, Nam T-H, Wang G, Ahn H-J (2013) High capacity cathode materials for Li–S batteries. J Mater Chem A 1:1573–1578. doi: 10.1039/C2TA00056C CrossRefGoogle Scholar
  24. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. doi: 10.1016/0021-9797(68)90272-5 CrossRefGoogle Scholar
  25. Thirunakaran R, Kim T, Yoon W-S (2014) Synthesis and electrochemical characterization on dual-doped LiCoO2 via green chemistry method for lithium rechargeable batteries. J Appl Electrochem 44:709–718. doi: 10.1007/s10800-014-0687-x CrossRefGoogle Scholar
  26. Ugur M, Kılıç H, Berkem M, Güngör A (2014) Synthesis by UV-curing and characterisation of polyurethane acrylate-lithium salts-based polymer electrolytes in lithium batteries. Chem Pap 68:1561–1572. doi: 10.2478/s11696-014-0611-1 CrossRefGoogle Scholar
  27. Wang J, Zhao Y, Zhuo K, Lin R (2002) A partial-molar volume study of electrolytes in propylene carbonate-based lithium battery electrolyte solutions at 298.15 K. Can J Chem 80:753–760. doi: 10.1139/v02-092 CrossRefGoogle Scholar
  28. Wang J, Liu L, Ling Z, Yang J, Wan C, Jiang C (2003) Polymer lithium cells with sulfur composites as cathode materials. Electrochim Acta 48:1861–1867. doi: 10.1016/S0013-4686(03)00258-5 CrossRefGoogle Scholar
  29. Wang H, Li S, Li D, Chen Z, Liu HK, Guo Z (2014) TiO2 coated three-dimensional hierarchically ordered porous sulfur electrode for the lithium/sulfur rechargeable batteries. Energy 75:597–602. doi: 10.1016/j.energy.2014.08.029 CrossRefGoogle Scholar
  30. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302. doi: 10.1021/cr020731c CrossRefGoogle Scholar
  31. Yang C-M, Kim H-S, Na B-K, Kum K-S, Cho BW (2006) Gel-type polymer electrolytes with different types of ceramic fillers and lithium salts for lithium-ion polymer batteries. J Power Sources 156:574–580. doi: 10.1016/j.jpowsour.2005.06.018 CrossRefGoogle Scholar
  32. Yeon S-H, Jung K-N, Yoon S, Shin K-H, Jin C-S, Kim Y (2013) Improved electrochemical performances of sulfur-microporous carbon composite electrode for Li/S battery. J Appl Electrochem 43:245–252. doi: 10.1007/s10800-012-0510-5 CrossRefGoogle Scholar
  33. Zhan LZ, Song ZP, Zhang JY, Tang J, Zhan H, Zhou YH, Zhan CM (2008) Synthesis and properties of novel organic thiolane polymer as cathode material for rechargeable lithium batteries. J Appl Electrochem 38:1691–1694. doi: 10.1007/s10800-008-9619-y CrossRefGoogle Scholar
  34. Zhang SS (2013) New insight into liquid electrolyte of rechargeable lithium/sulfur battery. Electrochim Acta 97:226–230. doi: 10.1016/j.electacta.2013.02.122 CrossRefGoogle Scholar
  35. Zhang P, Yang L, Li L, Ding M, Wu Y, Holze R (2011) Enhanced electrochemical and mechanical properties of P (VDF-HFP)-based composite polymer electrolytes with SiO 2 nanowires. J Membr Sci 379:80–85. doi: 10.1016/j.memsci.2011.05.043 CrossRefGoogle Scholar
  36. Zhang Z, Zhang Z, Wang X, Li J, Lai Y (2014) Enhanced electrochemical performance of sulfur cathode by incorporation of a thin conductive adhesion layer between the current collector and the active material layer. J Appl Electrochem 44:607–611. doi: 10.1007/s10800-014-0660-8 CrossRefGoogle Scholar
  37. Zhuravlev L (1987) Concentration of hydroxyl groups on the surface of amorphous silicas. Langmuir 3:316–318. doi: 10.1021/la00075a004 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  1. 1.Department of ChemistryMalek Ashtar University of TechnologyTehranIran

Personalised recommendations