Skip to main content
Log in

Biodegradation of imidacloprid by composting process

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This work presents the biodegradation of imidacloprid during composting process in a closed reactor. Composting mass was prepared from fresh vegetable waste, tobacco waste, dry leaves, imidacloprid 1.25 mg/kg (dry solids) and bacterial suspension of Pseudomonas aeruginosa FN. The composting process was carried out under forced aeration (0.516 dm3/min/kg) in a column reactor (10 dm3) under adiabatic conditions over 21 days. In a closed reactor system, the intense biodegradation of imidacloprid was during first 7 days when 68% of imidacloprid was degraded. The conversion and rate of biodegradation of imidacloprid in a closed reactor was much higher and faster than in an open pile. Imidacloprid degradation during composting process was described and simulated as first-order process. Degradation constant and half-life of imidacloprid were estimated in a closed reactor (k d  = 0.135 ± 0.016 mg/kg/day, t 1/2 = 5.13 days) and in an open pile (k d  = 0.025 ± 0.002 mg/kg/day, t 1/2 = 27.88 days).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akoijam R, Singh B (2015) Biodegradation of imidacloprid in sandy loam soil by Bacillus aerophilus. Int J Environ Anal Chem 95:730–743. doi:10.1080/03067319.2015.1055470

    Article  CAS  Google Scholar 

  • Anderson JC, Dubetz C, Palace VP (2015) Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Sci Total Environ 505:209–422. doi:10.1016/j.scitotenv.2014.09.090

    Article  Google Scholar 

  • APHA (1985) Standard methods for the examination of water and wastewater, 16th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Arias-Estevez M, Lopez-Periago E, Martinez-Carballo E, Simal-Gandara J, Carlos Mejuto J, Garcıa-Rıo L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123:247–260. doi:10.1016/j.agee.2007.07.011

    Article  CAS  Google Scholar 

  • Austrian Standards Institute (1986) Austrian standard: Analytical methods and quality control for waste compost. ÖNORM S 2023. Vienna, Austria

  • Bonmatin JM, Moineau I, Charvet R, Colin ME, Fleche C, Bengsch ER (2005) Behaviour of Imidacloprid in Fields. Toxicity for Honey Bees. In: Lichtfouse E, Schwarzbauer J, Didier R (eds) Environmental chemistry—green chemistry and pollutants in ecosystems, Chapter 44. Springer, Berlin, Heidelberg, pp 483–494. doi:10.1007/3-540-26531-7_44

    Google Scholar 

  • Briški F, Gomzi Z, Horgas N, Vuković M (2003) Aerobic composting of tobacco solid waste. Acta Chim Slov 50:715–729. doi:10.1007/s10098-003-0218-7

    Google Scholar 

  • Briški F, Kopčić N, Ćosić I, Kučić D, Vuković M (2012) Biodegradation of tobacco waste by composting: genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate. Chem Pap 66:1103–1110. doi:10.2478/s11696-012-0234-3

    Google Scholar 

  • Broznić D, Cedomila M (2008) NeonikotinoidiAgonisti nikotinskih acetilkolinskih receptora. Zbornik radova Stručnog seminara “Kontrola štetnika—Pest Control”. Rijeka (Komora sanitarnih inženjera i tehničara), Croatia, pp 2–9

  • Broznić D, Milin Č (2013) Mathematical prediction of imidacloprid persistence in two Croatian soils with different texture, organic matter content and acidity under laboratory conditions. J Environ Sci Health Part A 48:906–918. doi:10.1080/03601234.2013.816561

    Article  Google Scholar 

  • Bryden J, Gill RJ, Mitton RAA, Raine NE, Jensen VAA (2013) Chronic sublethal stress causes bee colony failure. Ecol Lett 16:1463–1469. doi:10.1111/ele.12188

    Article  Google Scholar 

  • Chen Y, Zhou W, Li Y, Zhang J, Zeng G, Huang A, Huang J (2014) Nitrite reductase genes as functional markers to investigate diversity of denitrifying bacteria during agricultural waste composting. Appl Microbiol Biotechnol 98:4233–4243. doi:10.1007/s00253-014-5514-0

    Article  CAS  Google Scholar 

  • Cheyns K, Mertens J, Diels J, Smolders E, Springael D (2010) Monod kinetics rather than a firs-order degradation model explains atrazine fate in soil mini-columns: implications for pesticide fate modelling. Environ Pollut 158:1405–1411. doi:10.1016/j.envpol.2009.12.041

    Article  CAS  Google Scholar 

  • Chishti Z, Hussain S, Arshad KR, Khalid A, Arshad M (2013) Microbial degradation of chlorpyrifos in liquid media and soil. J Environ Manage 114:372–380. doi:10.1016/j.jenvman.2012.10.032

    Article  CAS  Google Scholar 

  • Epstein E (1997) The science of composting, Chapter 2. Technomic Publishing Company, Lancaster, Pennsylvania, pp 19–22

    Google Scholar 

  • Fernandez FJ, Sanchez-Arias V, Rodriguez L, Villasenor J (2010) Feasibility of composting combinations of sewage sludge, olive mill waste and winery waste in a rotary drum reactor. Waste Manag 30:1948–1954. doi:10.1016/j.wasman.2010.04.007

    Article  CAS  Google Scholar 

  • Ghosh PG, Sawant NA, Patil SN, Aglave BA (2010) Microbial biodegradation of organophosphate pesticides. Int J Biochem Biotechnol 6:871–876. doi:10.1111/j.1574-6976.2006.00018.x

    Google Scholar 

  • Haug RT (1993) The Practical Handbook of Composting Engineering, Chapter 9. Lewis Publishers, Boca Raton, FL, pp 326–327

    Google Scholar 

  • Herner Ž, Bažok R, Briški F (2014) Biodegradation of imidacloprid in an open compost pile. J Food Agric Environ 12:198–202

    CAS  Google Scholar 

  • Hussaini SZ, Shaker M, Iqbal MA (2013) Isolation of bacterial for degradation of selected pesticides. Adv Biores 4:82–85

    Google Scholar 

  • Inglezakis VJ, Poulopouls SG (2006) Adsorption, ion exchange and catalysis design of operations and environmental applications, 1-595. Elsevier, The Netherlands

    Google Scholar 

  • Kolthoff IM, Sandel EB (1951) Inorganic quantitative analysis. Školska Knjiga, Zagreb, pp 347–352 (in Croatian)

    Google Scholar 

  • Kopčić N, Vuković Domanac M, Đaković Z, Briški F (2013) Composting of tobacco dust in different types of reactors. Chem Biochem Eng Q 27:57–64

    Google Scholar 

  • Kučić D, Kopčić N, Briški F (2013) Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste. Chem Pap 67:1172–1180. doi:10.2478/s11696-013-0322-z

    Google Scholar 

  • Kupper T, Bucheli TD, Brandli RC, Ortelli D, Edder P (2008) Dissipation of pesticides during composting and anaerobic digestion of source-separated organic waste at full-scale plants. Bioresour Technol 99:7988–7994. doi:10.1016/j.biortech.2008.03.052

    Article  CAS  Google Scholar 

  • Manderson GJ (2011) Composting agricultural and industrial wastes. Biotechnology 5:1–10

    Google Scholar 

  • Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 268:157–177. doi:10.1016/j.taap.2013.01.025

    Article  CAS  Google Scholar 

  • Nauen R, Hungenberg H, Tollo B, Tietjen K, Elbert A (1998) Antifeedant effect, biological efficacy and high affinity binding of imidacloprid to acetylcholine receptors in Myzus persicae and Myzus nicotianae. Pest Manag Sci 53:133–140. doi:10.1002/(SICI)1096-9063(199806)53:2<133:AID-PS756>3.0.CO;2-D

    Article  CAS  Google Scholar 

  • Pandey SP, Mohanty B (2015) The neonicotinoid pesticide imidacloprid and the dithiocarbamate fungicide mancozeb disrupt the pituitary–thyroid axis of a wildlife bird. Chemosphere 122:227–234. doi:10.1016/j.chemosphere.2014.11.061

    Article  CAS  Google Scholar 

  • Pandey G, Dorrian SJ, Russell RJ, Oakeshott JG (2009) Biotransformation of the neonicotinoids imidacloprid and thiamethoxam by Pseudomonas sp. 1G. Biochem Biophys Res Commun 380:710–714. doi:10.1016/j.bbrc.2009.01.156

    Article  CAS  Google Scholar 

  • Phugare SS, Kalyani DC, Gaikwad YB, Jadhwad JP (2013) Microbial degradation of imidacloprid and toxicological analysis of its biodegradation metabolites in silkworm (Bombyx mori). Chem Eng J 230:27–35. doi:10.1016/j.cej.2013.06.042

    Article  CAS  Google Scholar 

  • Placke FJ, Weber E (1993) Method of determining imidacloprid residues in plant materials. Pflanzenschutz Nachrichten Bayer 46:109–182

    CAS  Google Scholar 

  • Prescott LM, Harley JP, Klein DA (1996) Microbiology, 3rd edn. WCB Publishers, Chichester

    Google Scholar 

  • Rama Krishna K, Phillip L (2009) Biodegradation of mixed pesticides by mixed pesticide enriched cultures. J Environ Sci Health Part B 44:18–30. doi:10.1080/03601230802519520

    Article  Google Scholar 

  • Sabourmoghaddam N, Zakaria MP, Omar D (2015) Evidence for the microbial degradation of imidacloprid in soils of Cameron Highlands. J Saudi Soc Agric Sci 14:182–188. doi:10.1016/j.jssas.2014.03.002

    Google Scholar 

  • SEC (2008) Comission, European. Green Paper On the Management of bio-waste in the European Union, p. 2936

  • Sharma S, Singh B, Gupta VK (2014a) Assessment of imidacloprid degradation by soil-isolated Bacillus alkalinitrilicus (A). Environ Monit Assess 186:7183–7193. doi:10.1007/s10661-014-3919-y

    Article  CAS  Google Scholar 

  • Sharma S, Singh B, Gupta VK (2014b) Biodegradation of imidacloprid by consortium of two soil isolated Bacillus sp. (B). Bull Environ Contam Toxicol 93:637–642. doi:10.1007/s00128-014-1386-3

    Article  CAS  Google Scholar 

  • Verma JP, Jaiswal DK, Sagar R (2014) Pesticide relevance and their microbial degradation: a-state-of-art. Environ Sci Biotechnol 13:429–466. doi:10.1007/s11157-014-9341-7

    Article  Google Scholar 

  • Yadav SK (2010) Pesticide applications-threat to ecosystems. J Human Ecol 32:37–45. doi:10.1.1.469.2128

  • Zeng G, Yu Z, Chen Y, Zhang J, Li H, Yu M, Zhao M (2011) Response of compost maturity and microbial community composition to pentachlorophenol (PCP)-contaminated soil during composting. Bioresour Technol 102:5905–5911. doi:10.1016/j.biortech.2011.02.088

    Article  CAS  Google Scholar 

  • Zeng Y, De Guardia A, Ziebal C, De Macedo FJ, Dabert P (2012) Nitrification and microbiological evolution during aerobic treatment of municipal solid wastes. Bioresour Technol 110:144–152. doi:10.1016/j.biortech.2012.01.135

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dajana Kučić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herner, Ž., Kučić, D. & Zelić, B. Biodegradation of imidacloprid by composting process. Chem. Pap. 71, 13–20 (2017). https://doi.org/10.1007/s11696-016-0031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0031-5

Keywords

Navigation