Chemical Papers

, Volume 71, Issue 1, pp 3–12 | Cite as

Organic vapours sorption on simply modified bentonites

  • Martin MuchaEmail author
  • Jiří Pavlovský
  • Zuzana Navrátilová
Original Paper


Modified materials based on bentonite (acid-activated bentonite, mineralogically defined clay obtained by sedimentation, and composite material composed of bentonite and humic substances) were prepared in this work and sorption properties of the prepared materials for organic vapours (cyclohexane, toluene, mixture of xylenes and acetone) were determined. The aim of modification was the specific surface area enlargement and reduction of hydrophilic character. Results of the organic vapours adsorption show that the polarity of adsorbate is very important factor. It was found that adsorption of less polar and nonpolar organic vapours on the prepared clay-based materials took place through weak interactions and the specific surface area was key factor influencing adsorption process. Influence of water content in the materials can be considered, too. Adsorbed amounts of weakly polar organics on the clay materials were at most on the half level in comparison with active carbon. In the case of polar acetone the studied bentonites show the comparable adsorbed amounts as active carbon. It was found that acetone replaced water molecules in the solvation shells of interlayer cations, which was proven by infrared spectroscopy. The specific surface area did not play a leading role during adsorption of acetone on the bentonites.


Bentonite Modified bentonite Organic vapour Sorption 



The financial support through Project TEWEP No. LO1208 of the National Feasibility Programme I of the Czech Republic is gratefully appreciated. Authors thanks for Support in the Faculty of Metallurgy and Materials Engineering within the Project No. LO1203 “Regional Materials Science and Technology Centre-Feasibility Program”, funded by the Ministry of Education, Youth and Sports of the Czech Republic. Authors thank to RNDr. Marta Valášková, DSc. from Nanotechnology centre, VŠB-TU Ostrava for measurement of X-ray diffraction and minerals identification.


  1. Alamo-Nole LA, Perales-Perez O, Roman-Velazquez FR (2011) Sorption study of toluene and xylene in aqueous solutions by recycled tires crumb rubber. J Hazard Mater 185(1):107–111. doi: 10.1016/j.jhazmat.2010.09.003 CrossRefGoogle Scholar
  2. Arora M, Snape I, Stevens GW (2011) The effect of temperature on toluene sorption by granular activated carbon and its use in permeable reactive barriers in cold regions. Cold Reg Sci Technol 66(1):12–16. doi: 10.1016/j.coldregions.2010.12.007 CrossRefGoogle Scholar
  3. Avogadro (2015). [online] Accessed 27 Dec 2015
  4. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380. doi: 10.1021/ja01145a126 CrossRefGoogle Scholar
  5. Bergaya F, Lagaly G (2013) Handbook of clay science ISBN 978-008-0982-595, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  6. Breen AF, Breen C, Clegg F, Döppers L-M, M Labet, Sammon C, Yarwood J (2012) FTIR-ATR studies of the sorption and diffusion of acetone water mixtures in poly(vinyl alcohol)-clay nanocomposites. Polymer 53:4420–4428. doi: 10.1016/j.polymer.2012.07.057 CrossRefGoogle Scholar
  7. Breus IP, Mishchenko AA, Shinkarev AA, Neklyudov SA, Breus VA (2014) Effect of organic matter on the sorption activity of heavy loamy soils for volatile organic compounds under low moisture conditions. Eurasian Soil Sci 47(12):1216–1226. doi: 10.1134/S1064229314120011 CrossRefGoogle Scholar
  8. Carvalho MN, Da Motta M, Benachour M, Sales DCS, Abreu CAM (2012) Evaluation of BTEX and phenol removal from aqueous solution by multi-solute adsorption onto smectite organoclay. J Hazard Mater 239–240:95–101. doi: 10.1016/j.jhazmat.2012.07.057 CrossRefGoogle Scholar
  9. Dąbrowski A, Podkościelny P, Hubicki Z, Barczak M (2005) Adsorption of phenolic compounds by activated carbon—a critical review. Chemosphere 58:1049–1070. doi: 10.1016/j.chemosphere.2004.09.067 CrossRefGoogle Scholar
  10. Essington ME (2004) Soil and water chemistry: An integrative approach ISBN 0-8493-1258-2, 1st edn. CRC Press, Boca RatonGoogle Scholar
  11. Gammoudi S, Frini-Srasra N, Srasra E (2012) Influence of exchangeable cation of smectite on HDTMA adsorption: equilibrium, kinetic and thermodynamic studies. Appl Clay Sci 69:99–107. doi: 10.1016/j.clay.2011.11.011 CrossRefGoogle Scholar
  12. Ghiaci M, Abbaspur A, Kia R, Seyedeyn-Azad F (2004) Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM-41. Sep Purif Technol 40(3):217–229. doi: 10.1016/j.seppur.2004.03.001 CrossRefGoogle Scholar
  13. Horník M, Šuňovská A, Partelová D, Pipíška M, Jozef Augustín J (2013) Continuous sorption of synthetic dyes on dried biomass of microalgae Chlorella pyrenoidosa. Chem Pap 67(3):254–264. doi: 10.2478/s11696-012-0235-2 CrossRefGoogle Scholar
  14. Horváth G, Kawazoe K (1983) Method for the calculation of effective pore size distribution in molecular sieve carbon. J Chem Eng Jpn 16(6):470–475CrossRefGoogle Scholar
  15. Hu Q, Li JJ, Hao ZP, Li LD, Qiao SZ (2009) Dynamic adsorption of volatile organic compounds on organofunctionalized SBA-15 materials. Chem Eng J 149(1–3):281–288. doi: 10.1016/j.cej.2008.11.003 CrossRefGoogle Scholar
  16. Hussin F, Aroua MK, Daud WMAW (2011) Textural characteristics, surface chemistry and activation of bleaching earth: A review. Chem Eng J 170(1):90–106. doi: 10.1016/j.cej.2011.03.065 CrossRefGoogle Scholar
  17. Komadel P, Madejová J, Janek M, Gates WP, Kirkpatrick RJ, Stucki JW (1996) Dissolution of hectorite in inorganic acids. Clays Clay Miner 44(2):228–236CrossRefGoogle Scholar
  18. Lake C, Rowe R (2005) A comparative assessment of volatile organic compound (VOC) sorption to various types of potential GCL bentonites. Geotext Geomembr 23(4):323–347. doi: 10.1016/j.geotexmem.2005.01.001 CrossRefGoogle Scholar
  19. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403. doi: 10.1021/ja02242a004 CrossRefGoogle Scholar
  20. Lee D-G, Kim J-H, Lee C-H (2011) Adsorption and thermal regeneration of acetone and toluene vapors in dealuminated Y-zeolite bed. Sep Purif Technol 77(3):312–324. doi: 10.1016/j.seppur.2010.12.022 CrossRefGoogle Scholar
  21. Li Y, Yue Q, Gao B, Li Q, Li C (2008) Adsorption thermodynamic and kinetic studies of dissolved chromium onto humic acids. Colloids Surf B 65(1):25–29. doi: 10.1016/j.colsurfb.2008.02.014 CrossRefGoogle Scholar
  22. Lippens BC, De Boer JH (1965) Studies on pore systems in catalysts V. The t method. J Catal 4(3):319–323. doi: 10.1016/0021-9517(65)90307-6 CrossRefGoogle Scholar
  23. Morávková L, Vopička O, Vejražka J, Vychodilová H, Sedláková Z, Friess K, Izák P (2014) Vapour permeation and sorption in fluoropolymer gel membrane based on ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulphonyl)imide. Chem Pap 68(12):1739–1746. doi: 10.2478/s11696-014-0623-x CrossRefGoogle Scholar
  24. Morrissey FA, Grismer ME (1999) Kinetics of volatile organic compound sorption/desorption on the clay minerals. J Contam Hydrol 36:291–312CrossRefGoogle Scholar
  25. Mucha M, Pavlovský J, Herecová L, Míček D, Věžníková H (2012) Possibilities of Preparation of Materials Based on Clay Humic Acids. Chemické Listy 106(12):1140–1142Google Scholar
  26. Pavlovský J, Herecová L, Míček D, Věžníková H, Mucha M, Študentová S, Doležalová-Weissmannová H (2009) The utilization of new materials based on clay minerals for the sorption of gaseous pollutants. Spektrum 9(1):68–71Google Scholar
  27. Praus P, Turicová M, Študentová S, Ritz M (2006) Study of cetyltrimethylammonium and cetylpyridinium adsorption on montmorillonite. J Colloid Interface Sci 304(1):29–36. doi: 10.1016/j.jcis.2006.08.038 CrossRefGoogle Scholar
  28. Quijano G, Couvert A, Amrane A, Darracq G, Couriol C, Le Cloirec P, Paquin L, Carrié D (2013) Absorption and biodegradation of hydrophobic volatile organic compounds in ionic liquids. Water Air Soil Pollut 224:1528–1539. doi: 10.1007/s11270-013-1528-y CrossRefGoogle Scholar
  29. Reineke V, Rullkötter J, Smith EL, Rowland SJ (2006) Toxicity and compositional analysis of aromatic hydrocarbon fractions of two pairs of undegraded and biodegraded crude oils from the Santa Maria (California) and Vienna basins. Org Geochem 37(12):1885–1899. doi: 10.1016/j.orggeochem.2006.07.017 CrossRefGoogle Scholar
  30. Salih HH, Sorial GA, Patterson CL, Sinha R, Krishnan ER (2012) Removal of trichloroethylene by activated carbon in the presence and absence of TiO2 nanoparticles. Water Air Soil Pollut 223(5):2837–2847. doi: 10.1007/s11270-011-1070-8 CrossRefGoogle Scholar
  31. Salman M, El-Eswed B, Khalili F (2007) Adsorption of humic acid on bentonite. Appl Clay Sci 38(1–2):51–56. doi: 10.1016/j.clay.2007.02.011 CrossRefGoogle Scholar
  32. Seifi L, Torabian A, Kazemian H, Bidhendi GN, Ayimi AA, Farhadi F, Nazmara S (2011) Kinetic study of BTEX removal using granulated surfactant-modified natural zeolites nanoparticles. Water Air Soil Pollut 219(1):443–457. doi: 10.1007/s11270-010-0719-z CrossRefGoogle Scholar
  33. Seliem MK, Komarneli S, Cho Y, Lim T, Shahien MG, Khahil AA, Abd El-Gaid IM (2011) Organosilicas and organo-clay minerals as sorbents for toluene. Appl Clay Sci 52(1–2):184–189. doi: 10.1016/j.clay.2011.02.024 CrossRefGoogle Scholar
  34. Skokanová M, Dercová K (2008) Origin and Structure of Humic Acids. Chemické Listy 102(4):262–268Google Scholar
  35. Socrates G (2007) Infrared and Raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, West SussexGoogle Scholar
  36. Sriprapat W, Thiravetyan P (2013) Phytoremediation of BTEX from Indoor Air by Zamioculcas zamiifolia. Water Air Soil Pollut 224:1482–1490. doi: 10.1007/s11270-013-1482-8 CrossRefGoogle Scholar
  37. Thuc C-NH, Grillet A-C, Reinert L, Ohashi F, Thuc HH, Duclaux L (2010) Separation and purification of montmorillonite and polyethylene oxide modified montmorillonite from Vietnamese bentonites. Appl Clay Sci 49(3):229–238. doi: 10.1016/j.clay.2010.05.011 CrossRefGoogle Scholar
  38. Treesubsuntorn Ch, Suksabye P, Weangjun S, Pawana F, Thiravetyan P (2013) Benzene adsorption by plant leaf materials: effect of quantity and composition of wax. Water Air Soil Pollut 224:1736–1744. doi: 10.1007/s11270-013-1736-5 CrossRefGoogle Scholar
  39. Valenzuela Diaz FR, Santos PS (2001) Studies on the acid activation of Brazilian smectitic clays. Quim Nova 24(3):345–353CrossRefGoogle Scholar
  40. Vecer M, Spitova B, Koutnik I (2015) Determination of specific surface of activated mesocarbons by sorption of organic vapors. J Therm Anal Calorim 121(1):429–436. doi: 10.1007/s10973-015-4597-x CrossRefGoogle Scholar
  41. Volzone C, Rinaldi JO, Ortiga J (2006) Retention of gases by hexadecyltrimethylammonium–montmorillonite clays. J Environ Manag 79(3):247–252. doi: 10.1016/j.jenvman.2005.07.004 CrossRefGoogle Scholar
  42. Vopička O, Pilnáček K, Číhal P, Friess K (2016) Sorption of methanol, dimethyl carbonate, methyl acetate, and acetone vapors in CTA and PTMSP: General findings from the GAB Analysis. J Polym Sci Part B Polym Phys 54(5):561–569. doi: 10.1002/polb.23945 CrossRefGoogle Scholar
  43. Weiss Z, Kužvart M (2005) Jílové minerály: jejich nanostruktura a využití, 1st edn. Karolinum, PragueGoogle Scholar
  44. Zaitan H, Chafik T (2005) FTIR determination of adsorption characteristics for volatile organic compounds removal on diatomite mineral compared to commercial silica. C R Chim 8(9–10):1701–1708. doi: 10.1016/j.crci.2005.05.002 CrossRefGoogle Scholar
  45. Zaitan H, Bianchi D, Achak O, Chafik T (2008) A comparative study of the adsorption and desorption of o-xylene onto bentonite clay and alumina. J Hazard Mater 153(1–2):852–859. doi: 10.1016/j.jhazmat.2007.09.070 CrossRefGoogle Scholar
  46. Zamir SM, Ferdowsi M, Halladj R (2014) Effects of loading type and temperature on performance, transient operation, and kinetics of n-hexane vapor removal in a biofilter. Water Air Soil Pollut 225:1825–1834. doi: 10.1007/s11270-013-1825-5 CrossRefGoogle Scholar
  47. Zehraoui A, Wendell D, Sorial GA (2014) Biodegradation of a Ternary Mixture of Hydrophobic and Hydrophilic VOCs in Trickle Bed Air Biofilters. Water Air Soil Pollut 225:2075–2088. doi: 10.1007/s11270-014-2075-x CrossRefGoogle Scholar
  48. Zhang W, Ding Y, Boyd SA, Teppen BJ, Li H (2010) Sorption and desorption of carbamazepine from water by smectite clays. Chemosphere 81(7):954–960. doi: 10.1016/j.chemosphere.2010.07.053 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Martin Mucha
    • 1
    • 2
    Email author
  • Jiří Pavlovský
    • 3
  • Zuzana Navrátilová
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
  2. 2.Institute of Environmental Technologies, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
  3. 3.Department of Chemistry, Faculty of Metallurgy and Material EngineeringVŠB-TU OstravaOstrava-PorubaCzech Republic

Personalised recommendations