Skip to main content
Log in

The synthesis of a lanthanum metal–organic framework and its sensitivity electrochemical detection of H2O2

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A lanthanum metal–organic framework, [La(BTC)(H2O)(DMF)] (H3BTC = 1, 3, 5-benzenetricarboxylic acid), was synthesized under mild hydrothermal conditions. The synthesized [La(BTC)(H2O)(DMF)] was characterized by scanning electron microscopy in combination with energy dispersive X-ray spectroscopy (SEM/EDS), transmission electron microscopy (TEM), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FT-IR). Its electrochemical properties and electrocatalytic activity towards H2O2 reduction in acidic media were studied by cyclic voltammetry (CV) and amperometric current–time response. The [La(BTC)(H2O)(DMF)] modified electrode shows good electrochemical behavior and performs well electrocatalytic activity towards hydrogen peroxide (H2O2) reduction at ca. −0.7 V. The modified electrode displays a linear range from 5 μM to 2.67 mM and a limit of detection of 0.73 μM to H2O2. The [La(BTC)(H2O)(DMF)] modified electrode also possesses good selectivity and stability. Thus, [La(BTC)(H2O)(DMF)] will be a promising material for non-enzymatic H2O2 sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bashkova S, Bandosz TJ (2013) Insight into the role of the oxidized graphite precursor on the properties of copper-based MOF/graphite oxide composites. Microporous Mesoporous Mater 179:205–211. doi:10.1016/j.micromeso.2013.06.002

    Article  CAS  Google Scholar 

  • Bella F, Bongiovanni R, Kumar RS, Kulandainathan MA, Stephan AM (2013) Light cured networks containing metal organic frameworks as efficient and durable polymer electrolytes for dye-sensitized solar cells. J Mater Chem A 1:9033–9036. doi:10.1039/C3TA12135F

    Article  CAS  Google Scholar 

  • DeYulia GJ, Cárcamo JM, Bórquez Ojeda O, Shelton CC, Golde DW (2005) Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling. Proc Nat Acad Sci 102:5044–5049. doi:10.1073/pnas.0501154102

    Article  CAS  Google Scholar 

  • Díaz R, Orcajo MG, Botas JA, Calleja G, Palma J (2012) Co8-MOF-5 as electrode for supercapacitors. Mater Lett 68:126–128. doi:10.1016/j.matlet.2011.10.046

    Article  Google Scholar 

  • Doménech-Carbó A, Doménech-Carbó MT (2008) In situ AFM study of proton-assisted electrochemical oxidation/reduction of microparticles of organic dyes. Electrochem Commun 10:1238–1241. doi:10.1016/j.elecom.2008.06.013

    Article  Google Scholar 

  • Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214. doi:10.1039/B618320B

    Article  Google Scholar 

  • Garjonyte R, Malinauskas A (1999) Operational stability of amperometric hydrogen peroxide sensors, based on ferrous and copper hexacyanoferrates. Sens Actuators B Chem 56:93–97. doi:10.1016/S0925-4005(99)00161-6

    Article  CAS  Google Scholar 

  • Guo XD, Zhu GS, Li ZY, Sun FX, Yang ZH, Qiu SL (2006) A lanthanide metal-organic framework with high thermal stability and available Lewis-acid metal sites. Chem Commun 30:3172–3174. doi:10.1039/B605428E

    Article  Google Scholar 

  • He L, Liu Y, Liu J, Xiong Y, Zheng J, Liu Y, Tang Z (2013) Core–shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew Chem Int Ed 52:3741–3745. doi:10.1002/anie.201209903

    Article  CAS  Google Scholar 

  • Hosseini H, Ahmar H, Dehghani A, Bagheri A, Fakhari AR, Amini MM (2013) Au-SH-SiO2 nanoparticles supported on metal-organic framework (Au-SH-SiO2@Cu-MOF) as a sensor for electrocatalytic oxidation and determination of hydrazine. Electrochim Acta 88:301–309. doi:10.1016/j.electacta.2012.10.064

    Article  CAS  Google Scholar 

  • Jahan M, Bao QL, Loh KP (2012) Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. J Am Chem Soc 134:6707–6713. doi:10.1021/ja211433h

    Article  CAS  Google Scholar 

  • Kong LR, Lu XF, Bian XJ, Zhang WJ, Wang C (2010) Accurately tuning the dispersity and size of palladium particles on carbon spheres and using carbon spheres/palladium composite as support for polyaniline in H2O2 electrochemical sensing. Langmuir 26:5985–5990. doi:10.1021/la904509v

    Article  CAS  Google Scholar 

  • Kriz K, Kraft L, Krook M, Kriz D (2002) Amperometric determination of l-Lactate based on entrapment of lactate oxidase on a transducer surface with a semi-permeable membrane using a sire technology based biosensor. Application: tomato paste and baby food. J Agric Food Chem 50:419–3424. doi:10.1021/jf0114942

    Article  Google Scholar 

  • Li HL, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279. doi:10.1038/46248

    Article  CAS  Google Scholar 

  • Li JR, Kuppler R, Zhou HC (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38:1477–1504. doi:10.1039/B802426J

    Article  CAS  Google Scholar 

  • Li YZ, Huangfu C, Du HJ, Liu WB, Li YW, Ye JS (2013) Electrochemical behavior of metal–organic framework MIL-101 modified carbon paste electrode: an excellent candidate for electroanalysis. J Electro Chem 709:65–69. doi:10.1016/j.jelechem.2013.09.017

    Article  CAS  Google Scholar 

  • Liu SQ, Tang ZY (2010) Nanoparticle assemblies for biological and chemical sensing. J Mater Chem 20:24–35. doi:10.1039/B911328M

    Article  Google Scholar 

  • Liu HL, Liu YL, Li YW, Tang ZY, Jiang HF (2010) Metal-organic framework supported gold nanoparticles as a highly active heterogeneous catalyst for aerobic oxidation of alcohols. J Phys Chem C 114:13362–13369. doi:10.1021/jp105666f

    Article  CAS  Google Scholar 

  • Lobnik A, Čajlaković M (2001) Sol–gel based optical sensor for continuous determination of dissolved hydrogen peroxide. Sens Actuators B Chem 74:194–199. doi:10.1016/S0925-4005(00)00733-4

    Article  CAS  Google Scholar 

  • Lu G, Hupp JT (2010) Metal-organic frameworks as sensors: a ZIF-8 based Fabry–Pérot device as a selective sensor for chemical vapors and gases. J Am Chem Soc 132:7832–7833. doi:10.1021/ja101415b

    Article  CAS  Google Scholar 

  • Lu HT, Yu S, Fan Y, Yang CP, Xu DL (2013) Nonenzymatic hydrogen peroxide electrochemical sensor based on carbon-coated SnO2 supported Pt nanoparticles. Colloid Surf B 101:106–110. doi:10.1016/j.colsurfb.2012.05.033

    Article  CAS  Google Scholar 

  • Łyszczek R (2007) Thermal and spectroscopic investigations of new lanthanide complexes with 1, 2, 4-benzenetricarboxylic acid. J Therm Anal Calorim 90:533–539. doi:10.1007/s10973-006-7734-8

    Article  Google Scholar 

  • Mancini MC, Kairdolf BA, Smith AM, Nie SM (2008) Oxidative quenching and degradation of polymer-encapsulated quantum dots: new insights into the long-term fate and toxicity of nanocrystals in vivo. J Am Chem Soc 130:10836–10837. doi:10.1021/ja8040477

    Article  CAS  Google Scholar 

  • Mao JJ, Yang LF, Yu P, Wei XW, Mao LQ (2012) Electrocatalytic four-electron reduction of oxygen with Copper (II)-based metal–organic frameworks. Electrochem Commun 19:29–31. doi:10.1016/j.elecom.2012.02.025

    Article  CAS  Google Scholar 

  • Min KS, Suh MP (2000) Silver (I)-polynitrile network solids for anion exchange: anion-induced transformation of supramolecular structure in the crystalline state. J Am Chem Soc 122:6834–6840. doi:10.1021/ja000642m

    Article  CAS  Google Scholar 

  • Nossol E, Zarbin AJ (2009) A simple and innovative route to prepare a novel carbon nanotube/prussian blue electrode and its utilization as a highly sensitive H2O2 amperometric sensor. Adv Funct Mater 19:3980–3986. doi:10.1002/adfm.200901478

    Article  CAS  Google Scholar 

  • Palanisamy S, Chen S-M, Sarawathi R (2012) A novel nonenzymatic hydrogen peroxide sensor based on reduced graphene oxide/ZnO composite modified electrode. Sens Actuators B Chem 166:372–377. doi:10.1016/j.snb.2012.02.075

    Article  Google Scholar 

  • Rowsell JL, Yaghi OM (2004) Metal-organic frameworks: a new class of porous materials. Micropor Mesopor Mat 73:3–14. doi:10.1016/j.micromeso.2004.03.034

    Article  CAS  Google Scholar 

  • Santhosh P, Manesh KM, Gopalan A, Lee KP (2006) Fabrication of a new polyaniline grafted multi-wall carbon nanotube modified electrode and its application for electrochemical detection of hydrogen peroxide. Anal Chim Acta 575:32–38. doi:10.1016/j.aca.2006.05.075

    Article  CAS  Google Scholar 

  • Song MJ, Hwang SW, Whang D (2010) Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection. Talanta 80:1648–1652. doi:10.1016/j.talanta.2009.09.061

    Article  CAS  Google Scholar 

  • Wang MQ, Zhang Y, Bao SJ, Yu YN, Ye C (2016) Ni(II)-based metal-organic framework anchored on carbon nanotubes for highly sensitive non-enzymatic hydrogen peroxide sensing. Electrochem Acta 190:365–370. doi:10.1016/j.electacta.2015.12.199

    Article  CAS  Google Scholar 

  • Welch CM, Banks CE, Simm AO, Compton RG (2005) Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal Bioanal Chem 382:12–21. doi:10.1007/s00216-005-3205-5

    Article  CAS  Google Scholar 

  • Wen YH, Cheng JK, Feng YL, Zhang J, Li ZJ, Yao YG (2005) Synthesis and crystal structure of [La (BTC)(H2O)6]n. Chin J Struct Chem 24:1440–1444

    CAS  Google Scholar 

  • Woo S, Kim YR, Chung TD, Piao Y, Kim H (2012) Synthesis of a graphene–carbon nanotube composite and its electrochemical sensing of hydrogen peroxide. Electrochim Acta 59:509–514. doi:10.1016/j.electacta.2011.11.012

    Article  CAS  Google Scholar 

  • Xu F, Sun YJ, Zhang Y, Shi Y, Wen ZW, Li Z (2011) Graphene–Pt nanocomposite for nonenzymatic detection of hydrogen peroxide with enhanced sensitivity. Electrochem Commun 13:1131–1134. doi:10.1016/j.elecom.2011.07.017

    Article  CAS  Google Scholar 

  • Yang WT, Feng J, Zhang HJ (2012) Facile and rapid fabrication of nanostructured lanthanide coordination polymers as selective luminescent probes in aqueous solution. J Mater Chem 22:6819–6823. doi:10.1039/C2JM16344F

    Article  CAS  Google Scholar 

  • Yang LZ, Xu CL, Ye WC, Liu WS (2015a) An electrochemical sensor for H2O2 based on a new Co-metal-organic framework modified electrode. Sens Actuators B Chem 215:489–496. doi:10.1016/j.snb.2015.03.104

    Article  CAS  Google Scholar 

  • Yang J, Zhou B, Yao J, Jiang XQ (2015b) Nanorods of a new metal–biomolecule coordination polymer showing novel bidirectional electrocatalytic activity and excellent performance in electrochemical sensing. Biosens Bioelectron 67:66–72. doi:10.1016/j.bios.2014.06.047

    Article  CAS  Google Scholar 

  • Yao SJ, Xu JH, Wang Y, Chen XX, Xu YX, Hu SS (2006) A highly sensitive hydrogen peroxide amperometric sensor based on MnO2 nanoparticles and dihexadecyl hydrogen phosphate composite film. Anal Chim Acta 557:78–84. doi:10.1016/j.aca.2005.10.052

    Article  CAS  Google Scholar 

  • Zhang JD, Oyama M (2004) A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode. Electrochim Acta 50:85–90. doi:10.1016/j.electacta.2004.07.026

    Article  CAS  Google Scholar 

  • Zhang YL, Liu YP, He JM, Pang PF, Gao YT, Hu QF (2013) Electrochemical behavior of graphene/Nafion/Azure I/Au nanoparticles composites modified glass carbon electrode and its application as nonenzymatic hydrogen peroxide sensor. Electrochim Acta 90:550–555. doi:10.1016/j.electacta.2012.12.068

    Article  CAS  Google Scholar 

  • Zhang DJ, Zhang JC, Shi HZ, Guo XL, Guo YY, Zhang RC, Yuan BQ (2015a) Redox-active microsized metal–organic framework for efficient nonenzymatic H2O2 sensing. Sens Actuators B Chem 221:224–229. doi:10.1016/j.snb.2015.06.079

    Article  CAS  Google Scholar 

  • Zhang DJ, Zhang JC, Zhang RC, Shi HZ, Guo YY, Guo XL, Li SJ, Yuan BQ (2015b) 3D porous metal–organic framework as an efficient electrocatalyst for nonenzymatic sensing application. Talanta 144:1176–1181. doi:10.1016/j.talanta.2015.07.091

    Article  CAS  Google Scholar 

  • Zhao W, Wang HC, Qin X, Wang XS, Zhao ZX, Miao ZY, Chen LL, Shan MM, Fang YX, Chen Q (2009) A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode. Talanta 80:1029–1033. doi:10.1016/j.talanta.2009.07.055

    Article  CAS  Google Scholar 

  • Zhao MT, Deng K, He LC, Liu Y, Li GD, Zhao HJ, Tang ZY (2014) Core–shell palladium nanoparticle@metal–organic frameworks as multifunctional catalysts for cascade reactions. Am Chem Soc 136:1738–1741. doi:10.1021/ja411468e

    Article  CAS  Google Scholar 

  • Zhu X, Zheng HY, Wei XF, Lin ZY, Guo LH, Qiu B, Chen G (2013) Metal–organic framework (MOF): a novel sensing platform for biomolecules. Chem Commun 49:1276–1278. doi:10.1039/C2CC36661D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Fujian Province in China (2016J01067), the Program for New Century Excellent Talents in Minnan Normal University (MX14003), the Project for Visiting Abroad of Fujian Province and Minnan Normal University, and the Innovation Base Foundation for Graduate Students Education of Fujian Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yancai Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1574 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhong, Y. & Huang, J. The synthesis of a lanthanum metal–organic framework and its sensitivity electrochemical detection of H2O2 . Chem. Pap. 71, 913–920 (2017). https://doi.org/10.1007/s11696-016-0011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0011-9

Keywords

Navigation