Skip to main content

Advertisement

Log in

Glucose Levels and Insulin Secretion in Surgery-Induced Hyperglycemia in Normoglycemic Obese Patients

  • Research Article
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Transient hyperglycemia is commonly observed in non-diabetic subjects during surgery. We undertook this study to investigate (1) insulin secretion pattern and glucose levels during elective surgery, and (2) the role of pre-operative fasting in the development of surgery-induced hyperglycemia.

Methods

We examined 21 severely obese normal glucose tolerant patients, who underwent bariatric surgery. From the 21 operated subjects, 14 remained fasted while seven patients received 75 g glucose the preoperative night. They sampled at baseline and from the onset of operation frequently for 9 h thereafter, for measuring serum insulin and glucose.

Results

Hyperglycemia developed within 1 h from the onset of operation and lasted 9 h. The administration of 75 g glucose the preoperative night prevented surgery-induced hyperglycemia. Insulin profile analyzed by deconvolution analysis was similar between fasted patients and those who received 75 g glucose. Serum insulin was suppressed at the beginning of the surgery and reached baseline values 4 h thereafter.

Conclusion

Hyperglycemia occurred within 1 h from the beginning of surgery and sustained for at least 9 h while insulin levels are suppressed or unaltered compared to baseline values in euglycemia. The administration of 75 g glucose the preoperative night prevents surgery-induced hyperglycemia without altering the profile of insulin secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Van den Berghe G, Zegher F, Bouilion R. Acute and prolonged critical illness as different neuroendocrine paradigms. J Clin Endocrinol Metab. 1998;83:1827–34.

    Article  PubMed  Google Scholar 

  2. Langouche L, Van den Berghe G. The dynamic neuroendocrine response to critical illness. Endocrinol Metab Clin N Am. 2006;35:777–91.

    Article  CAS  Google Scholar 

  3. Wartofsky L, Burman KD. Alterations in thyroid function in patients with systemic illness: the “euthyroid sick syndrome”. Endocr Rev. 1982;3:164–217.

    PubMed  CAS  Google Scholar 

  4. Fliers E, Alkemade A, Wiersinga WM. The hypothalamic–pituitary–thyroid axis in critical illness. Best Pract Res Clin Endocrinol Metab. 2001;15:453–64.

    Article  PubMed  CAS  Google Scholar 

  5. Thorell A, Nygren J, Ljungqvist O. Insulin resistance: a marker of surgical stress. Curr Opin Clin Nutr Metab Care. 1999;2:69–78.

    Article  PubMed  CAS  Google Scholar 

  6. Ljungqvist O, Nygren J, Thorell A. Insulin resistance and elective surgery. Surgery. 2000;128:757–60.

    Article  PubMed  CAS  Google Scholar 

  7. Mizock BA. Alterations in fuel metabolism in critical illness: hyperglycaemia. Best Pract Res Clin Endocrinol Metab. 2001;15:533–51.

    Article  PubMed  CAS  Google Scholar 

  8. Pei D, Chen TW, Kuo YL, Hung YJ, Hsieh CH, Wu LY, et al. The effect of surgical stress on insulin sensitivity, glucose effectiveness and acute insulin response to glucose load. J Endocrinol Invest. 2003;26:397–402.

    PubMed  CAS  Google Scholar 

  9. Halter JB, Pflug AE. Relationship of impaired insulin secretion during surgical stress to anesthesia and catecholamine release. J Clin Endocrinol Metab. 1980;51:1093–8.

    PubMed  CAS  Google Scholar 

  10. Rizza RA, Mandarino LJ, Gerich JE. Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor defect in insulin action. J Clin Endocrinol Metab. 1982;54:131–8.

    PubMed  CAS  Google Scholar 

  11. Shamon H, Hendler R, Sherwin RS. Synergistic interactions among antiinsulin hormones in the pathogenesis of stress hyperglycemia in humans. J Clin Endocrinol Metab. 1981;52:1235–41.

    Google Scholar 

  12. Grimble RF. Inflammatory status and insulin resistance. Curr Opin Clin Nutr Metab Care. 2002;5:551–9.

    Article  PubMed  CAS  Google Scholar 

  13. Lang CH, Dobrescu C, Bagby GL. Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology. 1992;130:43–52.

    Article  PubMed  CAS  Google Scholar 

  14. Mehta VK, Hao W, Brooks-Worell BM, Palmer JP. Low dose interleukin I and tumor necrosis factor individually stimulate insulin release but in combination cause suppression. Eur J Endocrinol. 1994;130:208–14.

    PubMed  CAS  Google Scholar 

  15. Van den Berghe G. How does blood glucose control with insulin save lives in intensive care? J Clin Invest. 2004;114:1187–95.

    PubMed  Google Scholar 

  16. Clarke RS. The hyperglycaemic response to different types of surgery and anaesthesia. Br J Anaesth. 1970;42:45–53.

    Article  PubMed  CAS  Google Scholar 

  17. Goschke H, Bar E, Girard J, Leutenegger A, Niederer W, Oberholzer M, et al. Glucagon, insulin, cortisol, and growth hormone levels following major surgery: their relationship to glucose and free fatty acid elevations. Horm Metab Res. 1978;10:465–70.

    PubMed  CAS  Google Scholar 

  18. Allison SP, Prowse K, Chamberlain MJ. Failure of insulin response to glucose load during operation and after myocardial infarction. Lancet. 1967;1:478–81.

    Article  PubMed  CAS  Google Scholar 

  19. Giddings AE, Mangnall D, Rowlands BJ, Clark RG. Plasma insulin and surgery. I. Early changes due to operation in the insulin response to glucose. Ann Surg. 1977;186:681–6.

    Article  PubMed  CAS  Google Scholar 

  20. Aarimaa M, Syvalahti E, Viikari J, Ovaska J. Insulin, growth hormone and catecholamines as regulators of energy metabolism in the course of surgery. Acta Chir Scand. 1978;144:411–22.

    PubMed  CAS  Google Scholar 

  21. Ljungqvist O, Thorell A, Gutniak M, Haggmark T, Efendic S. Glucose infusion instead of preoperative fasting reduces postoperative insulin resistance. J Am Coll Surg. 1994;178:329–36.

    PubMed  CAS  Google Scholar 

  22. Thorell A, Alston-Smith J, Ljungqvist O. The effect of preoperative carbohydrate loading on hormonal changes, hepatic glycogen, and glucoregulatory enzymes during abdominal surgery. Nutrition. 1996;12:690–5.

    Article  PubMed  CAS  Google Scholar 

  23. Soop M, Nygren J, Myrenfors P, Thorell A, Ljungqvist O. Preoperative oral carbohydrate treatment attenuates immediate postoperative insulin resistance. Am J Physiol Endocrinol Metab. 2001;280:576–83.

    Google Scholar 

  24. Soop M, Nygren J, Thorell A, Weidenhielm L, Lundberg M, Hammarqvist F, et al. Preoperative oral carbohydrate treatment attenuates endogenous glucose release 3 days after surgery. Clin Nutr. Aug 2004;23(4):733–41.

    Article  PubMed  CAS  Google Scholar 

  25. Nygren J, Soop M, Thorell A, Efendic S, Nair KS, Ljungqvist O. Preoperative oral carbohydrate administration reduces postoperative insulin resistance. Clin Nutr. 1998;17:65–71.

    Article  PubMed  CAS  Google Scholar 

  26. Cahill GF Jr. Starvation in man. N Engl J Med. 1970;282:668–75.

    PubMed  CAS  Google Scholar 

  27. Association AD. Screening for diabetes. Diabetes Care. 2002;25:S21–4.

    Article  Google Scholar 

  28. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85:2402–10.

    Article  PubMed  CAS  Google Scholar 

  29. Veldhuis JD, Carlson ML, Johnson ML. The pituitary gland secretes in bursts: appraising the nature of glandular secretory impulses by simultaneous multiple-parameter deconvolution of plasma hormone concentrations. Proc Natl Acad Sci U S A. 1987;84:7686–90.

    Article  PubMed  CAS  Google Scholar 

  30. Porksen N, Nyholm B, Veldhuis JD, Butler PC, Schmitz O. In humans at least 75% of insulin secretion arises from punctuated insulin secretory bursts. Am J Physiol. 1997;273:E908–14.

    PubMed  CAS  Google Scholar 

  31. Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A. 1991;88:2297–301.

    Article  PubMed  CAS  Google Scholar 

  32. Veldhuis JD, Straume M, Iranmanesh A, Mulligan T, Jaffe C, Barkan A, et al. Secretory process regularity monitors neuroendocrine feedback and feedforward signaling strength in humans. Am J Physiol Regul Integr Comp Physiol. 2001;280:R721–9.

    PubMed  CAS  Google Scholar 

  33. Black PR, Brooks DC, Bessey PQ, Wolfe RR, Wilmore DW. Mechanisms of insulin resistance following injury. Ann Surg. 1982;196:420–35.

    Article  PubMed  CAS  Google Scholar 

  34. Thorell A, Nygren J, Hirshman MF, Hayashi T, Nair KS, Horton ES, et al. Surgery-induced insulin resistance in human patients: relation to glucose transport and utilization. Am J Physiol. 1999;276:E754–61.

    PubMed  CAS  Google Scholar 

  35. Nygren J, Thorell A, Efendic S, Nair KS, Ljungqvist O. Site of insulin resistance after surgery: the contribution of hypocaloric nutrition and bed rest. Clin Sci (Lond). 1997;93:137–46.

    CAS  Google Scholar 

  36. Fellander G, Nordenstrom J, Tjader I, Bolinder J, Arner P. Lipolysis during abdominal surgery. J Clin Endocrinol Metab. 1994;78:150–5.

    Article  PubMed  CAS  Google Scholar 

  37. Nakao K, Miyata M. The influence of phentolamine, an adrenergic blocking agent, on insulin secretion during surgery. Eur J Clin Invest. 1977;7:41–5.

    Article  PubMed  CAS  Google Scholar 

  38. Lattermann R, Schricker T, Wachter U, Goertz A, Georgieff M. Intraoperative epidural blockade prevents the increase in protein breakdown after abdominal surgery. Acta Anaesthesiol Scand. 2001;45:1140–6.

    Article  PubMed  CAS  Google Scholar 

  39. Brodner G, Van Aken H, Hertle L, Fobker M, Von Eckardstein A, Goeters C, et al. Multimodal perioperative management-combining thoracic epidural analgesia, forced mobilization, and oral nutrition-reduces hormonal and metabolic stress and improves convalescence after major urologic surgery. Anesth Analg. 2001;92:1594–600.

    Article  PubMed  CAS  Google Scholar 

  40. Suttner S, Lang K, Piper SN, Schultz H, Rohm KD, Boldt J. Continuous intra- and postoperative thoracic epidural analgesia attenuates brain natriuretic peptide release after major abdominal surgery. Anesth Analg. 2005;101:896–903.

    Article  PubMed  CAS  Google Scholar 

  41. Michalaki M, Vagenakis AG, Makri M, Kalfarentzos F, Kyriazopoulou V. Dissociation of the early decline in serum T(3) concentration and serum IL-6 rise and TNFalpha in nonthyroidal illness syndrome induced by abdominal surgery. J Clin Endocrinol Metab. 2001;86:4198–205.

    Article  PubMed  CAS  Google Scholar 

  42. Stewart P. Glucocorticoid hormone action. In: Larsen P, Kroneberg H, Melmed S, Polonsky K, editors. Williams text book of endocrinology, 10 edn. ch. 14. Saunders, Philadelphia; 2003. p. 503–6.

    Google Scholar 

  43. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med. 2001;345:1359–67.

    Article  PubMed  Google Scholar 

  44. Burroughs V, Weinberger J. Diabetes and stroke: part two-treating diabetes and stress hyperglycemia in hospitalized stroke patients. Curr Cardiol Rep. 2006;8:29–32.

    Article  PubMed  Google Scholar 

  45. Gentile NT, Seftchick MW, Huynh T, Kruus LK, Gaughan J. Decreased mortality by normalizing blood glucose after acute ischemic stroke. Acad Emerg Med. 2006;13:174–80.

    Article  PubMed  Google Scholar 

  46. Cheung NW, Wong VW, McLean M. The hyperglycemia: intensive insulin infusion in infarction (HI-5) study: a randomized controlled trial of insulin infusion therapy for myocardial infarction. Diabetes Care. 2006;29:765–70.

    Article  PubMed  CAS  Google Scholar 

  47. Malmberg K, Ryden L, Efendic S, Herlitz J, Nicol P, Waldenstrom A, et al. Randomized trial of insulin–glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year. J Am Coll Cardiol. 1995;26:57–65.

    Article  PubMed  CAS  Google Scholar 

  48. Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354:449–61.

    Article  PubMed  Google Scholar 

  49. Brunkhorst F, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358:125–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Michalaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalaki, M., Kyriazopoulou, V., Mylonas, P. et al. Glucose Levels and Insulin Secretion in Surgery-Induced Hyperglycemia in Normoglycemic Obese Patients. OBES SURG 18, 1460–1466 (2008). https://doi.org/10.1007/s11695-008-9501-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-008-9501-3

Keywords

Navigation