Comparative study of dehydrated papaya (Vasconcellea pubescens) by different drying methods: quality attributes and effects on cells viability

Abstract

The effect of different drying methods on sugar content and amino acid content, color and non-enzymatic browning of Chilean papaya (Vasconcellea pubescens) slices was investigated. The obtained fruit extracts were tested in cell viability assays on human endothelial ECV-304 cells. Drying techniques included freeze-, vacuum-, solar-, convective- and infrared-drying. Consistently, infrared-dried papaya had a lower sugar content and a higher non-enzymatic browning intensity than papaya dehydrated by the other methods. All dried samples were lighter in color with a lower yellow intensity compared to fresh papaya. The amino acid lysine was the most abundant in the infrared-dried sample. On the other side, the methods that employed vacuum, increased their cellular viability. Based on these results, operational parameters during drying processes should be considered to preserve, on one hand, product quality attributes, while, on the other hand, increasing cell viability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    A. Vega-Gálvez, J. Poblete, I. Quispe-Fuentes, E. Uribe, C. Bilbao-Sainz, A. Pastén, J. Food Meas. Charact. 13, 1980–1990 (2019)

    Article  Google Scholar 

  2. 2.

    C. Gaete-Eastman, C.R. Figueroa, C. Balbontín, M. Moya, R.G. Atkinson, R. Herrera, M.A. Moya-León, Postharvest Biol. Technol. 53, 58–65 (2009)

    CAS  Article  Google Scholar 

  3. 3.

    M.J. Simirgiotis, P.D.S. Caligari, G. Schmeda-Hirschmann, Food Chem. 115, 775–784 (2009)

    CAS  Article  Google Scholar 

  4. 4.

    E. Uribe, A. Delgadillo, C. Giovagnoli-Vicuña, I. Quispe-Fuentes, L. Zura-Bravo, J. Chem. 2015, 1–8 (2015)

    Article  Google Scholar 

  5. 5.

    C. Balbontín, C. Gaete-Eastman, M. Vergara, R. Herrera, M.A. Moya-León, Postharvest Biol. Technol. 43, 67–77 (2007)

    Article  Google Scholar 

  6. 6.

    A. Rahmat, R. Rosli, W. Zain, S. Endrini, H. Sani, J. Med. Sci. 2, 55–58 (2002)

    Article  Google Scholar 

  7. 7.

    T. Nguyen, M.-O. Parat, P. Shaw, A. Hewavitharana, M. Hodson, PLoS ONE 11, e0147956 (2016)

    Article  Google Scholar 

  8. 8.

    K.S. Alotaibi, H. Li, R. Rafi, R.A. Siddiqui, J. Cancer Metastasis Treat. 3, 161–168 (2017)

    CAS  Article  Google Scholar 

  9. 9.

    M.A. Moya-León, M. Moya, R. Herrera, Postharvest Biol. Technol. 34, 211–218 (2004)

    Article  Google Scholar 

  10. 10.

    P. Udomkun, M. Nagle, D. Argyropoulos, A.N. Wiredu, B. Mahayothee, J. Müller, J. Food Meas. Charact. 11, 2142–2150 (2017)

    Article  Google Scholar 

  11. 11.

    J.-Y. Yi, J. Lyu, J.-F. Bi, L.-Y. Zhou, M. Zhou, J. Food Process. Preserv. 41, e13300 (2017)

    Article  Google Scholar 

  12. 12.

    E. Vieira da Silva Junior, L. Lins de Melo, R.A. Batista de Medeiros, Z.M. Pimienra-Barros, P. Moreira-Azoubel, LWT-Food Sci. Technol. 97, 317–322 (2018)

    CAS  Article  Google Scholar 

  13. 13.

    W.F. Gomes, F.R.M. Franca, M. Denadai, J.K.S. Andrade, E.M. da Silva Oliveira, E. Sousa de Brito, S. Rodrigues, N. Narain, J. Food Sci. Technol. 55, 2095–2102 (2018)

    CAS  Article  Google Scholar 

  14. 14.

    N. Djendoubi Mrad, N. Boudhrioua, N. Kechaou, F. Courtois, C. Bonazzi, Food Bioprod. Process. 90, 433–441 (2012)

    Article  Google Scholar 

  15. 15.

    S. Meydav, J. Agric. Food Chem. 25, 602–604 (1977)

    CAS  Article  Google Scholar 

  16. 16.

    J.A. White, R.J. Hart, J.C. Fry, J. Automat. Chem. 8, 170–177 (1986)

    CAS  Article  Google Scholar 

  17. 17.

    N.M. Yartseva, R.F. Fedortseva, Cell Tissue Biol. 2, 428–435 (2008)

    Article  Google Scholar 

  18. 18.

    P. Udomkun, D. Argyropoulos, M. Nagle, B. Mahayothee, J. Müller, J. Food Eng. 157, 14–23 (2015)

    CAS  Article  Google Scholar 

  19. 19.

    Q. Wang, S. Li, X. Han, Y. Ni, D. Zhao, J. Hao, LWT-Food Sci. Technol. 107, 236–242 (2019)

    CAS  Article  Google Scholar 

  20. 20.

    Q.H. Gao, C.S. Wu, M. Wang, B.N. Xu, L.J. Du, J. Agric. Food Chem. 60, 9642–9648 (2012)

    CAS  Article  Google Scholar 

  21. 21.

    S. Kayacan, S. Karasu, P.K. Akman, H. Goktas, I. Doymaz, O. Sagdic, LWT-Food Sci. Technol. 118, 108830 (2020). https://doi.org/10.1016/j.lwt.2019.108830

    CAS  Article  Google Scholar 

  22. 22.

    J. Lyu, J. Yi, J.F. Bi, H. Gao, M. Zhou, X. Liu, Int. J. Food Eng. 13, 20160250 (2016)

    Google Scholar 

  23. 23.

    P. Udomkun, D. Argyropoulos, M. Nagle, B. Mahayothee, A.E. Oladeji, J. Müller, J. Food Meas. Charact. 12, 1028–1037 (2018)

    Article  Google Scholar 

  24. 24.

    A.M. Ceballos, G.I. Giraldo, C.E. Orrego, J. Food Eng. 111, 360–365 (2012)

    Article  Google Scholar 

  25. 25.

    M.C. Karam, J. Petit, D. Zimmer, E.B. Djantou, J. Scher, J. Food Eng. 188, 32–49 (2016)

    Article  Google Scholar 

  26. 26.

    M. Alongi, G. Verardo, A. Gorassini, M. Anese, LWT-Food Sci. Technol. 98, 366–371 (2018)

    CAS  Article  Google Scholar 

  27. 27.

    L. Seremet (Ceclu), O.-V. Nistor, D.G. Andronoiu, G.D. Mocanu, V.V. Barbu, A. Maidan, L. Rudi, E. Botez, Food Chem. 310, 125637 (2020). https://doi.org/10.1016/j.foodchem.2019.125637

    CAS  Article  Google Scholar 

  28. 28.

    Y. Deng, Y. Wang, J. Yue, Z. Liu, Y. Zheng, B. Qian, Y. Zhong, Y. Zhao, Food Control 36, 102–110 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    Y. Deng, Y. Luo, Y. Wang, Y. Zhao, Food Chem. 171, 168–176 (2015)

    CAS  Article  Google Scholar 

  30. 30.

    D. Virág, A. Kiss, P. Forgó, C. Csutorás, S. Molnár, Microchem. J. 107, 172–177 (2013)

    Article  Google Scholar 

  31. 31.

    B. Halliwell, FEBS Lett. 540, 3–6 (2003)

    CAS  Article  Google Scholar 

  32. 32.

    T. Yusa, J.D. Crapo, B.A. Freeman, Biochim. Biophys. Acta 798, 167–174 (1984)

    CAS  Article  Google Scholar 

  33. 33.

    B. Halliwell, Nutr. Rev. 57, 104–113 (1999)

    CAS  Article  Google Scholar 

  34. 34.

    B. Halliwell, Lancet 355, 1179–1180 (2000)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Project FONDECYT 1170601 and DIDULS PT17331 (Dirección de Investigación y Desarrollo de la Universidad de La Serena) for providing financial support for the publication of this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonio Vega-Gálvez.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vega-Gálvez, A., Uribe, E., Poblete, J. et al. Comparative study of dehydrated papaya (Vasconcellea pubescens) by different drying methods: quality attributes and effects on cells viability. Food Measure (2021). https://doi.org/10.1007/s11694-021-00845-6

Download citation

Keywords

  • Amino acids
  • Browning
  • Caricaceae
  • Dehydration
  • ECV-304 cells