Skip to main content
Log in

Comparative study of dehydrated papaya (Vasconcellea pubescens) by different drying methods: quality attributes and effects on cells viability

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The effect of different drying methods on sugar content and amino acid content, color and non-enzymatic browning of Chilean papaya (Vasconcellea pubescens) slices was investigated. The obtained fruit extracts were tested in cell viability assays on human endothelial ECV-304 cells. Drying techniques included freeze-, vacuum-, solar-, convective- and infrared-drying. Consistently, infrared-dried papaya had a lower sugar content and a higher non-enzymatic browning intensity than papaya dehydrated by the other methods. All dried samples were lighter in color with a lower yellow intensity compared to fresh papaya. The amino acid lysine was the most abundant in the infrared-dried sample. On the other side, the methods that employed vacuum, increased their cellular viability. Based on these results, operational parameters during drying processes should be considered to preserve, on one hand, product quality attributes, while, on the other hand, increasing cell viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A. Vega-Gálvez, J. Poblete, I. Quispe-Fuentes, E. Uribe, C. Bilbao-Sainz, A. Pastén, J. Food Meas. Charact. 13, 1980–1990 (2019)

    Article  Google Scholar 

  2. C. Gaete-Eastman, C.R. Figueroa, C. Balbontín, M. Moya, R.G. Atkinson, R. Herrera, M.A. Moya-León, Postharvest Biol. Technol. 53, 58–65 (2009)

    Article  CAS  Google Scholar 

  3. M.J. Simirgiotis, P.D.S. Caligari, G. Schmeda-Hirschmann, Food Chem. 115, 775–784 (2009)

    Article  CAS  Google Scholar 

  4. E. Uribe, A. Delgadillo, C. Giovagnoli-Vicuña, I. Quispe-Fuentes, L. Zura-Bravo, J. Chem. 2015, 1–8 (2015)

    Article  Google Scholar 

  5. C. Balbontín, C. Gaete-Eastman, M. Vergara, R. Herrera, M.A. Moya-León, Postharvest Biol. Technol. 43, 67–77 (2007)

    Article  Google Scholar 

  6. A. Rahmat, R. Rosli, W. Zain, S. Endrini, H. Sani, J. Med. Sci. 2, 55–58 (2002)

    Article  Google Scholar 

  7. T. Nguyen, M.-O. Parat, P. Shaw, A. Hewavitharana, M. Hodson, PLoS ONE 11, e0147956 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  8. K.S. Alotaibi, H. Li, R. Rafi, R.A. Siddiqui, J. Cancer Metastasis Treat. 3, 161–168 (2017)

    Article  CAS  Google Scholar 

  9. M.A. Moya-León, M. Moya, R. Herrera, Postharvest Biol. Technol. 34, 211–218 (2004)

    Article  Google Scholar 

  10. P. Udomkun, M. Nagle, D. Argyropoulos, A.N. Wiredu, B. Mahayothee, J. Müller, J. Food Meas. Charact. 11, 2142–2150 (2017)

    Article  Google Scholar 

  11. J.-Y. Yi, J. Lyu, J.-F. Bi, L.-Y. Zhou, M. Zhou, J. Food Process. Preserv. 41, e13300 (2017)

    Article  Google Scholar 

  12. E. Vieira da Silva Junior, L. Lins de Melo, R.A. Batista de Medeiros, Z.M. Pimienra-Barros, P. Moreira-Azoubel, LWT-Food Sci. Technol. 97, 317–322 (2018)

    Article  CAS  Google Scholar 

  13. W.F. Gomes, F.R.M. Franca, M. Denadai, J.K.S. Andrade, E.M. da Silva Oliveira, E. Sousa de Brito, S. Rodrigues, N. Narain, J. Food Sci. Technol. 55, 2095–2102 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. N. Djendoubi Mrad, N. Boudhrioua, N. Kechaou, F. Courtois, C. Bonazzi, Food Bioprod. Process. 90, 433–441 (2012)

    Article  Google Scholar 

  15. S. Meydav, J. Agric. Food Chem. 25, 602–604 (1977)

    Article  CAS  Google Scholar 

  16. J.A. White, R.J. Hart, J.C. Fry, J. Automat. Chem. 8, 170–177 (1986)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. N.M. Yartseva, R.F. Fedortseva, Cell Tissue Biol. 2, 428–435 (2008)

    Article  Google Scholar 

  18. P. Udomkun, D. Argyropoulos, M. Nagle, B. Mahayothee, J. Müller, J. Food Eng. 157, 14–23 (2015)

    Article  CAS  Google Scholar 

  19. Q. Wang, S. Li, X. Han, Y. Ni, D. Zhao, J. Hao, LWT-Food Sci. Technol. 107, 236–242 (2019)

    Article  CAS  Google Scholar 

  20. Q.H. Gao, C.S. Wu, M. Wang, B.N. Xu, L.J. Du, J. Agric. Food Chem. 60, 9642–9648 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. S. Kayacan, S. Karasu, P.K. Akman, H. Goktas, I. Doymaz, O. Sagdic, LWT-Food Sci. Technol. 118, 108830 (2020). https://doi.org/10.1016/j.lwt.2019.108830

    Article  CAS  Google Scholar 

  22. J. Lyu, J. Yi, J.F. Bi, H. Gao, M. Zhou, X. Liu, Int. J. Food Eng. 13, 20160250 (2016)

    Google Scholar 

  23. P. Udomkun, D. Argyropoulos, M. Nagle, B. Mahayothee, A.E. Oladeji, J. Müller, J. Food Meas. Charact. 12, 1028–1037 (2018)

    Article  Google Scholar 

  24. A.M. Ceballos, G.I. Giraldo, C.E. Orrego, J. Food Eng. 111, 360–365 (2012)

    Article  Google Scholar 

  25. M.C. Karam, J. Petit, D. Zimmer, E.B. Djantou, J. Scher, J. Food Eng. 188, 32–49 (2016)

    Article  Google Scholar 

  26. M. Alongi, G. Verardo, A. Gorassini, M. Anese, LWT-Food Sci. Technol. 98, 366–371 (2018)

    Article  CAS  Google Scholar 

  27. L. Seremet (Ceclu), O.-V. Nistor, D.G. Andronoiu, G.D. Mocanu, V.V. Barbu, A. Maidan, L. Rudi, E. Botez, Food Chem. 310, 125637 (2020). https://doi.org/10.1016/j.foodchem.2019.125637

    Article  CAS  Google Scholar 

  28. Y. Deng, Y. Wang, J. Yue, Z. Liu, Y. Zheng, B. Qian, Y. Zhong, Y. Zhao, Food Control 36, 102–110 (2014)

    Article  CAS  Google Scholar 

  29. Y. Deng, Y. Luo, Y. Wang, Y. Zhao, Food Chem. 171, 168–176 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. D. Virág, A. Kiss, P. Forgó, C. Csutorás, S. Molnár, Microchem. J. 107, 172–177 (2013)

    Article  Google Scholar 

  31. B. Halliwell, FEBS Lett. 540, 3–6 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. T. Yusa, J.D. Crapo, B.A. Freeman, Biochim. Biophys. Acta 798, 167–174 (1984)

    Article  CAS  PubMed  Google Scholar 

  33. B. Halliwell, Nutr. Rev. 57, 104–113 (1999)

    Article  CAS  PubMed  Google Scholar 

  34. B. Halliwell, Lancet 355, 1179–1180 (2000)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Project FONDECYT 1170601 and DIDULS PT17331 (Dirección de Investigación y Desarrollo de la Universidad de La Serena) for providing financial support for the publication of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Vega-Gálvez.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega-Gálvez, A., Uribe, E., Poblete, J. et al. Comparative study of dehydrated papaya (Vasconcellea pubescens) by different drying methods: quality attributes and effects on cells viability. Food Measure 15, 2524–2530 (2021). https://doi.org/10.1007/s11694-021-00845-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00845-6

Keywords

Navigation