Fabrication and characterization of LDPE/silver-copper/titanium dioxide nanocomposite films for application in Nile Tilapia (Oreochromis niloticus) packaging


Proper packaging is an essential issue in seafood safety leads to the preservation of food quality and extending the shelf life. In this study, fabrication and characterization of LDPE/Ag/TiO2 and LDPE/Ag + Cu/TiO2 nanocomposite films for application in Nile Tilapia packaging were evaluated. After investigation of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), disk diffusion test, minimum inhibitory concentration, and minimum bactericidal concentration, the antimicrobial effect of produced nanocomposite films was evaluated on the Tilapia fish samples stored at 4 °C and − 20 °C for 5 and 10 days. Chemical features (pH, protein and fat concentrations, and free fatty acid profile) of the Tilapia fish covered with the produced nanocomposites and nanoparticle migration were also assessed. EDS and SEM techniques confirmed the presence of nanoparticles on the polymer surface and their relative homogeneity. The antibacterial tests of LDPE/Ag + Cu/TiO2 nanocomposite film exhibited strong antibacterial activities against Escherichia coli and Listeria monocytogenes bacteria (P = 0.000). The microbiological tests revealed that Ag + Cu-contained film had significantly higher antimicrobial efficacy on the Nile Tilapia samples (P < 0.05). The overall result of the series of chemical experiments showed that Tilapia samples packed in Ag + Cu film had the least changes in chemical properties compared to fresh samples (P < 0.05 for pH, fat concentration, and free fatty acid profile). Besides, the migration of Ag and Cu nanoparticles from the film to Tilapia samples was slightly (the amount of Ag and Cu release was < 2.0 µg/Kg and < 10 µg/Kg, respectively). From the obtained results, it could be concluded that a film containing 2.5 % silver, 2.5 % copper, and 5 % titanium dioxide nanoparticles had the most significant antimicrobial effect on the Nile Tilapia fish. Therefore, using LDPE/Ag + Cu/TiO2 nanocomposite film can be a promising approach to create active packaging in the seafood industry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    V. Guillard, S. Gaucel, C. Fornaciari, H. Angellier-Coussy, P. Buche, N. Gontard, Front. Nutr. 5, 121 (2018)

    Article  Google Scholar 

  2. 2.

    Y. Echegoyen, C. Nerín, Food Chem. Toxicol. 62, 16–22 (2013)

    CAS  Article  Google Scholar 

  3. 3.

    S. Iravani, H. Korbekandi, S. Mirmohammadi, B. Zolfaghari, Res. Pharm. Sci. 9, 385–406 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    K. Yorseng, S. Siengchin, B. Ashok, A.V. Rajulu, J. Bioresour. Bioprod. 5(2), 101–107 (2020)

    CAS  Article  Google Scholar 

  5. 5.

    L. Li, C. Zhao, Y. Zhang, J. Yao, W. Yang, Q. Hu, C. Wang, C. Cao, Food Chem. 215, 477–482 (2017)

    CAS  Article  Google Scholar 

  6. 6.

    E. Arezoo, E. Mohammadreza, M. Mizani, A. Nafchi, Int. J Biol Macromol. 157, 743–751 (2020)

    CAS  Article  Google Scholar 

  7. 7.

    A. Khan, A. Rashid, R. Younas, R. Chong, Int. Nano Lett. 6(1), 21–26 (2016)

    CAS  Article  Google Scholar 

  8. 8.

    S. Azlin-Hasim, M.C. Cruz-Romero, M.A. Morris, E. Cummins, J.P. Kerry, Food Packag. Shelf Life 4, 26–35 (2015)

    Article  Google Scholar 

  9. 9.

    C. Zhang, W. Li, B. Zhu, H. Chen, H. Chi, L. Li, Y. Qin, J. Xue, Polymers 10(8), 894 (2018)

    Article  Google Scholar 

  10. 10.

    Z. Honarvar, Z. Hadian, M. Mashayekh, Electron. Phys. 8(6), 2531 (2016)

    Article  Google Scholar 

  11. 11.

    L. Peponi, D. Puglia, L. Torre, L. Valentini, J.M. Kenny, Mater. Sci. Eng. R Rep. 85, 1–46 (2014)

    Article  Google Scholar 

  12. 12.

    S. Barani, H. Ahari, S. Bazgir, Int. J. Food Prop. 21(1), 1923–1936 (2018)

    CAS  Article  Google Scholar 

  13. 13.

    D. Mousavian, A. Nafchi, L. Nouri, A. Abedinia, J. Food Meas. Charact. (2020). https://doi.org/10.1007/s11694-020-00690-z

    Article  Google Scholar 

  14. 14.

    Z. Fang, Y. Zhao, R.D. Warner, S.K. Johnson, Trends Food Sci. Technol. 61, 60–71 (2017)

    CAS  Article  Google Scholar 

  15. 15.

    K.V. Reesha, S.K. Panda, J. Bindu, T.O. Varghese, Int. J. Biol. Macromol. 79, 934–942 (2015)

    CAS  Article  Google Scholar 

  16. 16.

    G. Karabourniotis, G. Liakopoulos, D. Nikolopoulos, P. Bresta, J. Forest. Res. 31(1), 1–12 (2020)

    CAS  Article  Google Scholar 

  17. 17.

    V.K. Bajpai, M. Kamle, S. Shukla, D.K. Mahato, P. Chandra, S.K. Hwang, P. Kumar, Y.S. Huh, Y..-K.. Han, J. Food Drug Anal. 26(4), 1201–1214 (2018)

    CAS  Article  Google Scholar 

  18. 18.

    M.G. Guzmán, J. Dille, S. Godet, Int. J. Chem. Biomol. Eng. 2(3), 104–111 (2009)

    Google Scholar 

  19. 19.

    W. Oliani, D. Parra, L. Komatsu, N. Lincopan, V. Rangari, Mater. Sci. Eng. C 75, 845–853 (2016)

    Article  Google Scholar 

  20. 20.

    S. Lotfi, H. Ahari, R. Sahraeyan, J. Food Saf. 39(3), e12625 (2019)

    Article  Google Scholar 

  21. 21.

    A.W. Bauer, W.M. Kirby, J.C. Sherris, M. Turck, Am. J. Clin. Pathol. 45(4), 493–496 (1966)

    CAS  Article  Google Scholar 

  22. 22.

    B. Vinklárková, V. Chromý, L. Šprongl, M. Bittová, M. Rikanová, I. Ohnútková, L. Žaludová, Crit. Rev. Anal. Chem. 45(2), 112–118 (2015)

    Article  Google Scholar 

  23. 23.

    B.W.B. Holman, K.L. Bailes, R.G. Meyer, D.L. Hopkins, J. Food Sci. Technol. 56(8), 3957–3961 (2019)

    CAS  Article  Google Scholar 

  24. 24.

    J. Ahmed, Y.A. Arfat, A. Bher, M. Mulla, H. Jacob, R. Auras, J. Food Sci. 83(5), 1299–1310 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    A.A. Becaro, F.C. Puti, D.S. Correa, E.C. Paris, J.M. Marconcini, M.D. Ferreira, J. Nanosci. Nanotechnol. 15(3), 2148–2156 (2015)

    CAS  Article  Google Scholar 

  26. 26.

    S. Mathew, A. Jayakumar, V.P. Kumar, J. Mathew, E.K. Radhakrishnan, Int. J. Biol. Macromol. 139, 475–485 (2019)

    CAS  Article  Google Scholar 

  27. 27.

    A. Perdikaki, A. Galeou, G. Pilatos, I. Karatasios, N.K. Kanellopoulos, A. Prombona, G.N. Karanikolos, ACS Appl. Mater. Interfaces. 8(41), 27498–27510 (2016)

    CAS  Article  Google Scholar 

  28. 28.

    P.P. Fu, Q. Xia, H.M. Hwang, P.C. Ray, H. Yu, J. Food Drug Anal. 22(1), 64–75 (2014)

    CAS  Article  Google Scholar 

  29. 29.

    H. Wu, J.J. Yin, W.G. Wamer, M. Zeng, Y.M. Lo, J. Food Drug Anal. 22(1), 86–94 (2014)

    CAS  Article  Google Scholar 

  30. 30.

    Y.A. Arfat, M. Ejaz, H. Jacob, J. Ahmed, Carbohydr. Polym. 157, 65–71 (2017)

    CAS  Article  Google Scholar 

  31. 31.

    J. Ahmed, Y.A. Arfat, E. Castro-Aguirre, R. Auras, Int. J. Biol. Macromol. 86, 885–892 (2016)

    CAS  Article  Google Scholar 

  32. 32.

    M. Valodkar, S. Modi, A. Pal, S. Thakore, Mater. Res. Bull. 46(3), 384–389 (2011)

    CAS  Article  Google Scholar 

  33. 33.

    European Commission, Regulation (EC) No. 450/2009. Off. J. Eur. Union L. 3–11 (2009)

  34. 34.

    S.C. Wilschefski, M.R. Baxter, Clin. Biochem. Rev. 40(3), 115–133 (2019)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hamed Ahari.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Efatian, H., Ahari, H., Shahbazzadeh, D. et al. Fabrication and characterization of LDPE/silver-copper/titanium dioxide nanocomposite films for application in Nile Tilapia (Oreochromis niloticus) packaging. Food Measure (2021). https://doi.org/10.1007/s11694-021-00836-7

Download citation


  • Nanocomposite
  • Shelf life
  • Antimicrobial activity
  • Fish
  • Packaging